

700829 — 3D-Forensics/FTI — H2020-FTIPilot-2015-1

3D-Forensics/FTI – Mobile high-resolution 3D-Scanner and 3D data analysis for forensic evidence fast track to innovation

Developmental Validation of the 3D-Forensics system

	Document Information
Authors:	S. Crabbe – Crabbe Consulting Ltd (CCLD) M. Lucas – LUCAS instruments GmbH (LUC) R. Ramm – Fraunhofer IOF (IOF) M. Sgrenzaroli – Gexcel Srl (GEX)
Lead by:	CCLD
Prepared by:	ALL
Reviewed by:	ALL
Security*:	PU
Protocol:	3DFFTI_RPT_DV
Rev.:	1_1
1 st version:	4 September 2020
Annex No.	4

Project co-funded by the European Commission within the Horizon 2020 Programme (2014-2020)

No part may be reproduced, transmitted in any form or by any means electronic, mechanical, photo copying, recording or otherwise, transferred to other documents, disclosed to a third party or used for any other purpose except in accordance with the provisions of European Grant Agreement No. 700829

 $^{*\}mathbf{PU} = Public$

PP = Restricted to other programme participants (including the Commission Services).

RE = Restricted to a group specified by the consortium (including the Commission Services).

CO = Confidential, only for members of the consortium (including the Commission Services).

SUMMARY: This report contains the final results on developmental validation in the 3D-Forensics/FTI project. These results were carried out by the consortium and members of the associated EETG (External Expert Tester Group).

	Document Evolution		
Revision	Date	File Reference	Reason of change
Rev. 1_0	08/04/2020	3DFFTI_RPT_DV_V1_0	Initial creation based on internal <u>D4.3</u> report.
Rev. 1_1	04/09/2020	3DFFTI_RPT_DV_V1_1	Additional clarifications, added to pages 25, 90, 161 and 162.

Contents

1	Те	rms a	and definitions	7
2	Int	rodu	tion	10
3	Va	lidati	on strategy and procedure	11
	3.1	Inte	rnational and national guideline framework conditions for validation	11
	3.2	Арр	blication of international and national guidelines to 3D-Forensics/FTI validation	15
	3.3	Dev	velopmental validation procedure	18
4	3D)-Sca	nner: Recording of traces as 3D point clouds with the 3D-Scanner	23
	4.1	Тес	hnical principle and reference publications	23
	4.2	Per	formance limitations, interferences and countermeasures	23
	4.3	Rev	viewed end user requirements and related specifications	25
	4.4	Dev	velopmental validation test results – summarised overview	28
	4.4	1.1	Limit of resolution and repeatability measurement precision	28
	4.4	1.2	Limit of inclination angle for recording data	29
	4.4	4.3	3D accuracy and repeatability measurement precision	30
	4.4	1.3.1	Test 1 – Circle board	30
	4.4	4.3.2	Test 2 - Ball sphere distance normal test	31
	4.4	1.4	Influences on the 3D measurement (robustness)	32
	4.4	1.4.1	Challenging materials / surface characteristics	32
	4.4	1.4.2	User / device – reproducibility measurement precision	34
	4.4	1.4.3	Handheld scan mode	38
	4.4	1.4.4	Position of field of view	42
	4.4	1.4.5	Working distance	45
	4.4	1.4.6	Tilting	47
	4.4	1.4.7	Orientation (influence on resolution)	49
	4.4	1.4.8	Temperature	50
	4.4	4.4.9	Sunlight	52
	4.5	Dev	velopmental validation assessment	55
	4.6	٨d	vice for the implementation of the tool	63
5	3D)-Sca	nner: Mapping of external colour images onto 3D point clouds	64
	5.1	Тес	chnical principle and reference publications	64

	5.2	Per	formance limitations, interferences and countermeasures	64
	5.3	Rev	viewed end user requirements and related specifications	65
	5.4	Dev	elopmental validation test results – summarised overview	66
	5.4	.1	Colour mapping accuracy and corresponding repeatability measurement p	precision66
	5.4	.2	Influences on colour mapping (robustness)	67
	5.4	.2.1	User / device	67
	5.4	.2.2	Handheld scan mode	68
	5.4	.2.3	Position in field of view	69
	5.4	.2.4	Working distance	70
	5.4	.2.5	Tilting	71
	5.4	.2.6	Temperature	72
	5.4	.2.7	Sunlight	73
	5.5	Dev	elopmental validation assessment	75
	5.6	Adv	ice for the implementation of the tool	78
6	3D	anal	ysis software: Visualisation of 3D point clouds on a PC	79
	6.1	Tec	hnical principle and reference publications	79
	6.2	Per	formance limitations, interferences and countermeasures	79
	6.3	Rev	viewed end user requirements and related specifications	79
	6.4	Dev	elopmental validation test results – summarised overview	79
	6.4	.1	Resolution and specificity	79
	6.5	Dev	elopmental validation assessment	82
	6.6	Adv	rice for the implementation of the tool	83
7	3D	anal	ysis software: Registration of 3D point clouds	84
	7.1	Tec	hnical principle and reference publications	84
	7.2	Per	formance limitations, interferences and countermeasures	84
	7.3	Rev	viewed end user requirements and related specifications	84
	7.4	Dev	elopmental validation test results – summarised overview	85
	7.4	.1	3D accuracy and reproducibility measurement precision	85
	7.4	.2	3D accuracy and robustness against preregistration error	87
	7.5	Dev	elopmental validation assessment	88
	7.6	Adv	ice for the implementation of the tool	90
8	3D	anal	ysis software: Meshing of 3D points	91

8.1	Technical principle and reference publications	91
8.2	Performance limitations, interferences and countermeasures	91
8.3	Reviewed end user requirements and related specifications	91
8.4	Developmental validation test results – summarised overview	91
8.4	4.1 3D accuracy and specificity	91
8.5	Developmental validation assessment	93
8.6	Advice for the implementation of the tool	94
9 3E	D analysis software: Capability to measure in data accurately	95
9.1	Technical principle and reference publications	95
9.2	Performance limitations, interferences and countermeasures	95
9.3	Reviewed end user requirements and related specifications	95
9.4	Developmental validation test results – summarised overview	95
9.4	4.1 Measurement accuracy and repeatability of the software itself	95
9.4	4.2 Measurement accuracy and reproducibility	96
9.5	Developmental validation assessment	98
9.6	Advice for the implementation of the tool	99
10 Co	onclusions	100
Bibliog	raphy	103
Annex	1: User requirements and specifications in answer to requirements	105
Expl	anation method to note and prioritise requirements and specifications	105
3D-5	Scanner requirements / specifications list	106
3D a	nalysis software requirements/specifications list	127
Ensu	uring admissibility in court as evidence requirements / specifications list	144
Annex	2: 3D-Forensics system's product specifications (June 2019)	148
30	D-Scanner	148
30	Danalysis software	149
Annex	3: Development validation test specimens	151
Over	view specimens used to test specifications and related test references	151
3D re	esolution specimen	153
Sphe	ere normal	156
Calib	bration board	156
Sphe	ere distance normal	158

700829 — 3D-Forensics/FTI — H2020-FTIPilot-2015-1 SECURITY: PU 3D-Forensics/FTI Developmental Validation	Protocol: 3DFFTI_RPT_DV Rev. 1_1
Realistic objects: Shoe sole / MikroTrack [™] impression	158
3D point cloud visualisation specimen	159

Overlapping 3D scans specimen	160
Annex 4: Detailed test scenarios and full and final developmental validation results	164

1 Terms and definitions

Term	Definition
3D point cloud	A large set of 3D points each with X, Y, and Z component, in this context an ordered 3D point cloud is captured which means that the 3D points are ordered in rows and columns.
Accuracy	Agreement between accepted and obtained values, here in the context of distance measurements.
Authentication	The data is an accurate presentation of what it purports to be.
Calibration (in context of 3D sensors)	Operation that, under specified conditions, in a first step, establishes a relation between the quantity values with measurement uncertainties provided by measurement standards and corresponding indications with associated measurement uncertainties. In the context of multi camera based 3D sensors the calibration includes the intrinsic characteristics of the optical elements (magnification, distortion, decentering) and the external relative orientation between the cameras (translation, rotation). In this 3D-Scanner the two stereo cameras and the external photo apparatus are calibrated elements.
CJS	Criminal Justice System.
Colour mapping	The photo is projected onto the 3D data by geometrical constraints.
DV	Developmental validation.
Examination / Observation	 Specification can be validated through: Reference to the properly implemented design definition; and/or Implementation of already established/validated methods which are referenced; and/or Visual (generally) validation. Validation is based on human factors, or uses very common and passive means like microscope, gauge,
Integrity	The data (image etc.) presented is complete and unaltered since time of acquisition.
Length measurement error (LME)	Evaluation of 3D accuracy in terms of distance error of known points with calibrated test specimens:

Term	Definition
Measurement uncertainty	Variance of measurement results, typically expressed as standard deviation Measurement uncertainty is given by confidence interval for $p = 0.95$ Equation: $\pm U = \pm t\alpha * s$ Where: t α is the Student-factor considering the number of measurements e.g. for 10 measurements (with p=0.95) it is 2.228; and s is the standard deviation over the number of measurements. We always assumed that the measured values followed a Gaussian normal distribution.
	The confidence interval for $p = 0.95$ implies that 95% of observations fall within the range ±U and about 5% should be expected to be outside. This means that if a certain length (e.g. shoe size) was measured in the 3D data to see whether it matches with a certain reference length, and the true value of the length was outside that range, although unlikely, an outright exclusion of such an outlier would probably be incorrect. Using a larger confidence interval increases the probability, e.g. Six Sigma (6 times the standard deviation) would increase it to 99.99966%. Also performing repeated measurements of the same issue would increase the likeliness. ¹
	Applying the above by way of example, in the "Test Case 9 Measurement Reproducibility" reported in section 9.4.2, 10 users measured the same length in the analysis software. For all of the ten individual measured lengths, the range given by the individual measured length +/- 0,391mm was 95% likely to include the "true" length. In the results, the "true" univocal length was within the range of all the 10 individual measurements +/- 0,391mm. In the case that the distance measurement would be performed 100 times, measurement uncertainty predicts about 5 of those measurements would not include the "true" length within the ranges given by each of those 5 individual measurements +/- 0,391mm. (<i>This test case tested the users' capabilities to measure length and not the intrinsic accuracy of the software to measure. This was also tested and is reported in section 9.4.1.</i>)
Meshing	The single points in the 3D point cloud are connected by small triangles to create a closed surface. In ordered point clouds this process is supported by the known neighbour relationships between the points.
Precision	Consistency of measurements.
Probing Error	Evaluation of 3D accuracy in terms of form error to calibrated test specimen

¹ See also Forensic Science Regulator, *Guidance: Validation* p41 (FSR, Issue 1, 2014) (Available at: <<u>https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/375285/FSR-G-201_Validation_guidance_November_2014.pdf</u>> last accessed 19 July 2018).

Use, duplication or disclosure of data contained on this sheet is subject to the restrictions on the front sheet of this document.

Term	Definition
	geometry e.g.:
	Form deviation relative to ideal sphere
Range Lower / upper limit of detection	Range in which measurement values can be obtained, here in the context of distance range / depth of focus of the 3D-Scanner (ca. 405 505 mm).
Registration	Two (or more) 3D datasets are aligned to each other by ICP algorithm (Iterative closest points).
Repeatability	Repeatability measurement precision under a set of repeatability conditions of measurement (same measurement procedure, same operators, same measuring system, same operating conditions and same location, and replicate measurements on the same or similar objects over a short period of time).
Reproducibility	Reproducibility measurement precision under reproducibility conditions of measurement (different locations, operators, measuring systems, and replicate measurements on the same or similar objects).
Resolution	Smallest distance needed between two edges to be resolved as separate edges.
Robustness	Efficiency of method to small variations in parameters.
Round robin (in forensic context)	Verification of performance and reproducibility of results.
Specificity	Ability to detect features in presence of other components.
Test	Validation of functional characteristics that can be measured. Test equipment / set-ups are generally required to perform tests.
Validation (in forensic context)	Demonstrate that the technique is fit for purpose.

Table 1: Terms and definitions

2 Introduction

This report describes the 3D-Forensics/FTI system developmental validation carried out by the consortium partners and the associated External Expert Tester Group (EETG) up to the end of June 2019.

Chapter 3 describes framework conditions derived from relevant guidelines and their application for the planning and implementation of the 3D-Forensics/FTI system validation.

Chapter 4 – Chapter 9 describe for the <u>six</u> main system tool functionalities subject to developmental validation:

- The technical principle and reference publications
- Performance limitations, interferences and countermeasures
- Reviewed end user requirements, related specifications and acceptance criteria
- Developmental validation test results summarised in overview
- Developmental validation assessment for the functionality
- Advice for the implementation of the system tool

The developmental validation results include validation activities carried out by EETG members for reproducibility testing ("Round robin tests").

Chapter 10 provides conclusions.

Annex 1 describes the system user requirements, specifications as defined at the beginning of the previous FP7 project (2014) and their review culminating in the preparation for developmental validation.

Annex 2 described the 3D-Forensics system's product specifications as of June 2019.

Annex 3 describes the tests specimens used for developmental validation.

Annex 4 provides the detailed test scenarios and full and final developmental validation results.

3 Validation strategy and procedure

3.1 International and national guideline framework conditions for validation

The goal of validation is to demonstrate and document that the results from the 3D-Forensics/FTI system can be relied upon in forensic science activities connected with footwear and tyre impressions. It is "the process of providing objective evidence that a method, process or device is fit for the specific purpose intended."² Reliability is crucial as the system is to be used in criminal investigations which should lead to the solving of crime and also prosecutions. Without proof of reliability, police organisations are unlikely to adopt the system in any meaningful way and evidence based on it, if submitted to court, risks being judged inadmissible or at the very least of low probative value.

How validation is to be demonstrated and documented for individual organisations varies across the world, also within Europe. It is not the case that all forensic organisations carrying out forensic science activities, and particularly connected with footwear and tyre impressions, must be accredited following international standards. In general, it is however to be recognised that there is an increasing move towards ensuring the quality of forensic science activities through accreditation to international standards.

The international standards most relevant to 3D-Forensics/FTI are ISO/IEC 17020³ and ISO/IEC 17025.⁴The International Laboratory Accreditation Cooperation (ILAC) provides guidelines on the application of these standards to forensic processes.⁵ The United Kingdom's Forensic Science Regulator (FSR) implements these guidelines in further guidance.^{6,7}

The 3D-Forensics/FTI Description of the Action (DoA) indicated that the project would refer to both the guidelines from ILAC and the UK FSR in planning and preparing its validation activities. Further research and analysis, including discussions with members of the EETG and other forensic users, has confirmed this approach remains valid. By targeting the requirements for validation within an accredited process, 3D-Forensics/FTI should satisfy the most stringent validation criteria within any organisation providing forensic services.

² Ibid. p3.

³ BS EN ISO/IEC 17020:2012, Conformity assessment - Requirements for the operation of various types of bodies performing inspection.

<<u>http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=52994</u>> last accessed 18 February 2019).

⁴ BS EN ISO/IEC 17025:2017, General requirements for the competence of testing and calibration laboratories (Available at:

<<u>http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=39883</u>> last accessed 18 February 2019).

⁵ International Laboratory Accreditation Cooperation, *Modules in a Forensic Science Process* (2014) (Available at: <<u>http://ilac.org/?ddownload=805</u>> last accessed 18 February 2019).

⁶ Supra: FSR/Validation.

⁷ Forensic Science Regulator, *Codes of Practice and Conduct for forensic science service providers and practitioners in the Criminal Justice System*, Vers. 4.0 October 2017 (FSR 2017) (Available at: <<u>https://www.gov.uk/government/publications/forensic-science-providers-codes-of-practice-and-conduct-2017</u>> last accessed 18 February 2019) and supra: ILAC/G19 Annex A.

Use, duplication or disclosure of data contained on this sheet is subject to the restrictions on the front sheet of this document.

The analysis of the ILAC and UK FSR guidelines identified a number of framework conditions of particular pertinence for the project. These are provided below and were key for the project's validation planning and preparation:

- "Validation is the confirmation by examination and the provision of objective evidence that the particular requirements for a specific intended use are fulfilled"⁸
- "Validation involves demonstrating that a method used for any form of analysis is fit for the specific purpose intended, i.e. the results can be relied upon"⁹
- "Validation is performed against specific and measurable, testable or observable acceptance criteria" (FSR/Validation s.5.5.1)^{*10}
- "It is generally the method, the use that something is put to, that can truly be validated rather than any sub-processes, component parts, devices or tools"¹¹
- "... it is only those features that have an impact on the result that are likely to be required to be included in the validation"¹²
- "Developmental validation is the acquisition of objective evidence of the fitness of purpose for a new or novel methodology often performed by the developer or manufacturer"¹³
- "Methods that involve the application of commonly accepted scientific theories/principles in an area where it is relatively routine will require far less assessment than methods that apply a new scientific model/theory or apply an existing model/theory in a novel area"¹⁴
- Footwear impressions comparison to evidential standards is a recognised forensic science activity¹⁵
- Both the FSR and ILAC identify that manufacturers can carry out validation¹⁶ (*but there is no an indication that validation requirements are then different to what a forensic unit needs to do*)
- FSR says responsibility for validation stays with forensic unit and cannot be transferred to manufacturer, but manufacturer (and other agencies) can produce objective evidence to show method can be relied upon¹⁷
- FSR and ILAC indicate that "when a method has been validated in another organisation the forensic unit shall review the validation records to ensure that the validation performed was fit for purpose. It is then possible for the forensic unit to only undertake *verification* for the method to demonstrate that the unit is competent to perform the test/examination"¹⁸

⁸ Supra: ILAC/G19 s2.22.

⁹ Supra: FSR/Validation s1.1.2.

¹⁰ Ibid. s5.5.1.

¹¹ Ibid. s3.3.1.

¹² Ibid. s3.3.2.

¹³ Ibid. ss4.2.7.

¹⁴ Ibid. s4.4.11.

¹⁵ FSR/Codes Table 1, p7 and supra: ILAC/G19 Annex A.

¹⁶ Supra: FSR/Codes s20.2.1 and ILAC/G19.

¹⁷ Supra: FSR/Validation s1.13.

¹⁸ Supra: ILAC/G19 s3.10 and FSR/Validation s1.1.5.

- "In considering the scientific model/theory in terms of its validity and the limits of applicability, publications in respected scientific journals can usually be relied on."¹⁹ It is "not a requirement that a validation study is published"²⁰ "Published work deemed relevant and reliable can be used to supplement the performance criteria derived from the end-user requirement/ specification that need to be verified to show a method works in the provider's hands."²¹
- "Methods may be validated by comparison with other established methods using certified reference materials (where available) or materials of known characteristics"²²
- "If a method is required to use portable equipment for any reason, the validation study shall include any additional aspects that may impact on the tests (e.g. temperature, humidity, surfaces, cross reactivity, lighting)"²³
- For validation of measurement-based methods, "The functional and performance requirements, and the relevant parameters and characteristics for measurement-based methods that shall be considered include the: a. competence requirements of the user, b. environment constraints, ... I. results are consistent, reliable, accurate, robust, and with an uncertainty measurement, m. compatibility of results obtained by other analysts using different equipment and different methods; and n. limitations of applicability."²⁴
- "An interpretive method shall require only the relevant subset of the parameters and characteristics for measurement-based methods to be determined."²⁵
- "Some examples of portable equipment used at the scene that needs calibration or checking according to a prescribed maintenance program before taken to the scene are the following: Digital cameras (white balance calibration).... Measurement devices for recording distances and dimensions"²⁶
- Same or similar procedure can be used to check the calibration and recalibrate the 3D-Scanner regularly in the laboratory²⁷
- None exclusive list of issues which may need to be determined when validating test methods include (see Figure 1):

¹⁹ Supra: FSR/Validation s4.4.2.

²⁰ Ibid. s4.4.6.

²¹ Ibid. s4.4.9.

²² Supra: ILAC/G19 s3.10.

²³ Supra: FSR/Codes s20.1.4.

²⁴ Ibid. FSR/Codes 220.2.34.

²⁵ Ibid. FSR/Codes 220.2.36.

²⁶ Supra: ILAC/G19 s4.4.5.

²⁷ Ibid. s3.10.

Use, duplication or disclosure of data contained on this sheet is subject to the restrictions on the front sheet of this document.

Scope of the method Intended purpose and limitations

- Sampling
- sampling strategy

Sample preparation

sample homogeneity

Testing

- accuracy
- precision
- measurement uncertainty
- matrix effects
- interference limit of detection
- limit of quantification
- linearity range
- stability of measured compounds
- specificity and selectivity
- repeatability
- reproducibility
- robustness

Interpretation

- Reproducibility
- Robustness
- Performance characteristics
- Hypothesis and/or scenarios
- Databases
- Statistical Evaluation
- Limitations of conclusions Scientific Literature

Figure 1 None exclusive issues which may need to be determined when validating test methods

- Regarding the actual procedure to be followed for validation the FSR is more prescriptive than ILAC, indicating the following steps:
 - a. "determining the end-user's requirements;
 - b. determining the specification;
 - c. risk assessment of the method;
 - d. a review of the end-user's requirements and specification;
 - e. setting the acceptance criteria;
 - f. the validation plan;
 - g. the outcomes of the validation exercise;
 - h. assessment of acceptance criteria compliance;
 - i. validation report;
 - j. statement of validation completion; and
 - k. implementation plan"28

²⁸ Supra: FSR/Codes s20.2.5.

Use, duplication or disclosure of data contained on this sheet is subject to the restrictions on the front sheet of this document.

- "There should be a clear separation between development and validation to ensure that the final version of a method is the subject of the validation study",²⁹ "validation should be of the final method rather than an extension to method development."³⁰
- "The correct operation of a method is the sum-of-its-parts, so modifying any aspect of a method may influence several seemingly unconnected performance parameters. Once a performance parameter has been characterised, modifying a method/instrument to fix underachievement for subsequent performance characteristics may nullify all the previous testing."³¹
- "The risk assessment process during validation is not about managing out and/or mitigating all the risks inherent in a method, as the method development stage should have largely dealt with this. It is about understanding the risks to ensure that the validation study correctly assesses whether the risk mitigation put in place works. There may be risks that cannot be managed out of the analytical stage, but many of these can be dealt with by the more human aspects of secondary checks, as required in the validation of interpretive methods."³²
- "Before verification of performance, the provider must review/assess/verify that the external/developmental validation:

a. was relevant to the way that the provider intends to use the method (e.g. covering the equivalent end-user requirements and to being used in the same manner); and

b. had been conducted in a scientifically robust manner.

Internal validation is probably a better term, as it is less likely to be misconstrued. This is in contrast to the larger more in-depth study, which is sometimes called a developmental validation.³³

• "The requirements are for validation, internal validation may be demonstrating that established methods and procedures are relevant and perform as expected in the laboratory but may also need to cover aspects of the underlying fitness for purpose."³⁴

3.2 Application of international and national guidelines to 3D-Forensics/FTI validation

The application of the key framework conditions identified in the guidelines presented in the previous section led to the following conclusions and decisions for 3D-Forensics/FTI validation:

• 3D-Scan by fringe projection is already a standard technique in industrial quality control and other areas. Some crime scene investigators are already familiar with 3D-Scanning with laser

³⁴ Op.cit.

²⁹ Supra: FSR/Validation s5.1.4.

³⁰ Ibid. s5.7.4.

³¹ Ibid. s5.1.5.

³² Ibid. s5.4.2.

³³ Ibid. s4.2.6-4.2.7.

Use, duplication or disclosure of data contained on this sheet is subject to the restrictions on the front sheet of this document.

scanners (e.g. Landeskriminalamt³⁵ (LKA) Hamburg has also validated its usage). While still carrying out validation tests we should also identify and document that 3D-scanning is a standard method adapted to capture traces at crime scenes.

- Forensics units should have already validated their workflow of recording and analysing footwear imprints and impressions with state of the art (i.e. photography/plaster casting/expert visual analysis and comparison).
- 3D-Forensics/FTI (consortium and forensic units) should only concentrate on validating what we add / update in the forensic workflow of recording and analysing footwear imprints and impressions e.g. recording of traces as 3D point clouds with the 3D-Scanner, mapping of colour data from an external digital camera to the 3D point clouds, visualisation of 3D point clouds on PC, registration of 3D point clouds, meshing of 3D points, camera re-calibration, a number of analysis and reporting tools for the experts.
- Validation can be done independently for each step in this workflow
- We need to demonstrate the results (i.e. recorded data and visualisation/measurement etc. tools) provided by the 3D-Scanner and 3D analysis software can be relied upon with any caveats regarding e.g. performance limitations; required quality controls, including calibration; required competence/training, ...

Validation methods	
Method Comments	
Examination / Observation (E/O)	 Specification can be validated through: Reference to the properly implemented design definition; and/or Implementation of already established/validated methods which are referenced; and/or Visual (generally) validation. Validation is based on human factors, or uses very common and passive means like microscope, gauge,
Test (T)	Validation of functional characteristics that can be measured. Test equipment / set-ups are generally required to perform tests.

• Relevant validation methods are examination/observation (E/O) and test (T) (see Table 2).

Table 2: Validation methods

 In consortium developmental validation testing, we orientated our planning and reporting on the FSR validation process for the issues which needed to be determined with validation data.³⁶

³⁵ Landeskriminalamt = State Office of Criminal Investigations.

Use, duplication or disclosure of data contained on this sheet is subject to the restrictions on the front sheet of this document.

- Linking to FSR our "issues" were in principle our reviewed "key" specifications
- We focused on specifications that have impact on the results. The main ones were: resolution, accuracy, robustness, reproducibility, repeatability, integrity, authenticity, measurement uncertainty, interference.
- We focused the "Round robin" on a sub-set of the issues/specifications as identified in Table 3.
- The "Round robin" scans were performed in the standard scan mode "Quad", in which the 3D-Scanner is used on a quadpod (or in another stationary scan position) and in the alternative scan mode "Hand", in which the 3D-Scanner is held by the user during the scan acquisition.

Focus of "Round robin" validation tests		
Issues/specifications	Comment	
Reproducibility measurement precision (of resolution and accuracy)	 Replication of data by Crime Scene Investigators (3D-Scanner) Replication of analysis data by footwear examiners (3D analysis software) 	
Robustness (of resolution and accuracy)	 Efficacy of methods to small variations in parameters (such as working distance and angle of measurement) Influence of scan mode 	

Table 3: Focus of "Round robin" validation tests

- Certified reference materials were applied and developed informed with test samples such as ball bars, reference planes, reference edges used by VDI 2634 and in discussion with EETG members³⁷
- The risk of updates and improvements to the 3D-Scanner and 3D analysis software were assessed with regards to the continued validity of previously obtained developmental validation results.

³⁶ None exclusive Issues are those stated in ILAC/G19 in s3.10 and referenced to by FSR in FSR/Validation s5.3.5.

³⁷ Verein Deutscher Ingenieure (VDI) (Association German Engineers), VDI-Richtlinie: VDI/VDE 2634 Blatt 1 Optische 3D-Messsysteme – Bildgebende Systeme mit punktförmiger Antastung/ Optical 3D measuring systems Imaging systems with point-by-point probing (2014), (Available at: <<u>https://www.vdi.de/nc/richtlinie/vdivde_2634_blatt_1-</u>

optische_3d_messsysteme_bildgebende_systeme_mit_punktfoermiger_antastung/> accessed 18 February 2019).

Use, duplication or disclosure of data contained on this sheet is subject to the restrictions on the front sheet of this document.

 Under user validation, the users, informed with the developmental validation test results and any earlier testing of the 3D-Forensics/FTI system, must decide what needs to be done for validation/verification within their organisations.

These conclusions and decisions led to the implementation of the developmental validation procedures described in the next section. User validation approach was determined by the users themselves, primarily to date, as far as reported, through pilot testing to assess requirements considered particularly important for their organisations.

3.3 Developmental validation procedure

As stated in 3.2, T4500 (consortium developmental validation testing) was orientated on the FSR validation process described in 3.1:

- a. "determining the end-user's requirements;
- b. determining the specification;
- c. risk assessment of the method;
- d. a review of the end-user's requirements and specification;
- e. setting the acceptance criteria;
- f. the validation plan;
- g. the outcomes of the validation exercise;
- h. assessment of acceptance criteria compliance;
- i. validation report;
- j. statement of validation completion; and
- k. implementation plan"38

It was recognised that not all aspects were applicable to the consortium as developers but that this approach would enable also the end users to determine which issues they would need to verify and or validate independently from the consortium.

The application of the process is shortly described below.

a. Determining the end-user's requirements

These were defined already in the earlier FP7 project in 2013 with an update in 2014 (deliverable <u>D1.1 System parameter requirements</u>). The primary forensic end user input was provided by the Politie Zeeland-West Brabant in the Netherlands. They are included in Annex 1 to this report.

b. Determining the specifications

These were defined already in the earlier FP7 project in 2014 (deliverable <u>D2.1 Technical design</u> <u>of the Sensor</u>). They are included in Annex 1 to this report.

³⁸ Supra: FSR/Codes s20.2.5.

Use, duplication or disclosure of data contained on this sheet is subject to the restrictions on the front sheet of this document.

Both requirements and also the specifications have been continually reviewed both within the FP7 and present FTI projects for relevance and accuracy with input from the EETG, further end users and consortium developmental and testing experience.

c. Risk assessment of the method

During the system development risks inherent to the functionalities implemented were identified and mitigation methods were defined. Considering the application, the main risks to the Criminal Justice System (CJS) would be if data is not recorded (resolution) and/or is not recorded or presented accurately and/or users are not aware of potential limitations. In preparation of the developmental validation these risks and mitigation methods were evaluated to ensure that the validation investigations would assess whether the proposed risk mitigations work.

Sections 4.2, 5.2, 6.2, 7.2, 8.2, 9.2 report on performance limitations, interferences and countermeasures for each of the <u>six</u> main system tool functionalities subjected to developmental validation.

Sections 4.5, 5.5, 6.5, 7.5, 8.5, 9.5 which report on the developmental validation for each of the <u>six</u> main system tool functionalities subjected to developmental validation also highlight limitations in connection with for example, scan mode, substrate and structure, which users must consider in evaluating the information provided by the system.

Most of the methods used in the 3D-Forensics system are in their principle already established methods in other fields, such as industrial quality control. In this report, the technical principles behind the applied tools are described and reference publications are listed in the sections 4.1, 5.1, 6.1, 7.1, 8.1, 9.1. The references give a link to advanced technical background and concrete applications of the methods. Through this, the users can verify that the applied tool is already established in other non-forensics fields.

The risk assessment directly informed which of the end-user's requirements and specifications needed to be subject to specific developmental validation tests.

d. <u>A review of the end-user's requirements and specifications</u>

In preparation of the developmental validation, the end user requirements and specifications were reviewed considering the knowledge gained since 2014 and the risk assessment. We took as a basis the end user requirements and specifications as defined in 2014 and commented, updated and/or extended them to reflect the actual level of knowledge at that time. Additional more detailed (sub-) specifications were added to higher level specifications as determined. This was primarily a result of considering the aspects identified by both ILAC and the FSR in Figure 1 above and the risk assessment e.g. precision, repeatability, reproducibility, robustness and measurement uncertainty. They are included in Annex 1 to this report.

It must be mentioned that the reported end-user's requirements and specifications were defined to the best of our knowledge. The past contacts with many different forensic organisations showed that each has its own perspective and own priorities. The consortium tried to be in accordance with all received feedback. When users do their own "user" verification or validation of the system, they should add, remove or change specifications as relevant.

Use, duplication or disclosure of data contained on this sheet is subject to the restrictions on the front sheet of this document.

e. <u>Setting the acceptance criteria</u>

The reviewed end-user's requirements and specifications were evaluated to determine which needed to be subjected to a validation method (Examination/Observation or Test – see Table 2 above). This was determined by assessing which features are new or novel for the forensic application and which have an impact on the reliability of the results displayed by the system.

This process led to the setting of the developmental validation for the <u>six</u> main system tool functionalities subjected to developmental validation described in this report in chapters 4-9.

3D-F	orensics system tools subject to	developmental validation
	Added / updated forensic tool	Replaced tool
3D-S	canner	
1	Recording of traces as 3D point clouds with the 3D-Scanner	Recording of traces as 2D photos with a digital camera or as "3D" plaster casts
2	Mapping of external colour images onto 3D point clouds	None (new tool)
3D ai	nalysis software	
3	Visualisation of 3D point clouds on a PC	Visualisation of 2D images on a PC
4	Registration of 3D point clouds	None (new tool)
5	Meshing of 3D points	None (new tool)
6	Capability to measure in data accurately	Rulers

Table 4: Forensic tools provided by the 3D-Forensics system subject to developmental validation

The decision to group specifications around the <u>six</u> main system tool functionalities was taken to be able to developmentally validate each functionality separately and for breaking down the complication in test planning, implementation, assessment and reporting.

The acceptance criteria for these <u>six</u> main system tool functionalities was for the developmental validation the meeting of the relevant specifications as listed in the sections 4.3, 5.3, 6.3, 7.3, 8.3, 9.3.

Use, duplication or disclosure of data contained on this sheet is subject to the restrictions on the front sheet of this document.

f. The validation plan

We assessed for each relevant specification (as mentioned above: sections 4.3, 5.3, 6.3, 7.3, 8.3, 9.3) of the <u>six</u> main system tool functionalities which validation method was appropriate i.e. examination/observation or test (as described in Table 2 above). (The methods implemented for each specification during developmental validation are reported in the sections 4.5, 5.5, 6.5, 7.5, 8.5, 9.5. reporting on the developmental validation assessments.)

For those specifications requiring test equipment / set-ups the test specimens were chosen and/or designed and manufactured and test set-ups designed also considering the statistical significance of the tests, but also the resources available in the project. The VDI guideline uses at least 7 scans of sphere distance normal and at least 10 scans of spheres.³⁹ Annex 3 reports on the test specimens and in Annex 4 the test setups with the specimens are described in detail for each of the different test scenarios. The timing of testing and evaluation was implemented adaptively within the consortium and with end users for reproducibility testing.

g. The outcomes of the validation exercise

As noted above, the user requirements and specifications had been reviewed to consider aspects identified by both ILAC and the FSR in Figure 1 above and the risk assessment e.g. precision, repeatability, reproducibility, robustness and measurement uncertainty. These specifications were key to designing the developmental validation study represented in the validation plan.

The validation exercise was performed with the goal to have standards that ensure that the results are of a sufficient quality to establish the reliability of a method, if necessary, in court, paying due regard to any limitations in the tools.

h. Assessment of acceptance criteria compliance

The results of the validation exercise were assessed against the acceptance criteria (as described above, the specifications). This assessment is provided for each of the <u>six</u> main system tool functionalities in the developmental validation assessment sections 4.5, 5.5, 6.5, 7.5, 8.5, 9.5. Reminders on performance limitations, interferences and countermeasures (described in sections 4.2, 5.2, 6.2, 7.2, 8.2, 9.2) are also included here.

The actual system product specifications achieved and/or assessed by the developers, considering also developmental validation as of June 2019 are reported accordingly in Annex 2.

We provide directions for the end users with regards to required quality controls during operation and recommended user competencies and training levels in the sections 4.6, 5.6, 6.6, 7.6, 8.6 and 9.6.

i. Validation report

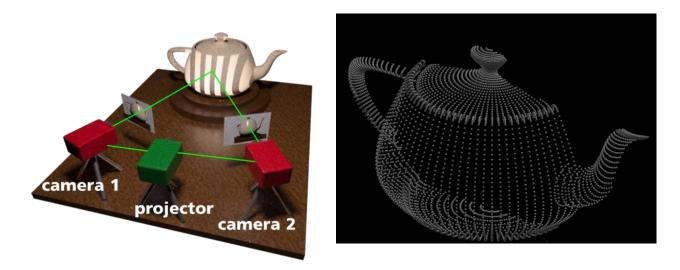
This document includes the developmental validation report (and feedback from users on their validation activities / assessments).

³⁹ Supra: VDI-Richtlinie 2634 – Blatt 2.

Use, duplication or disclosure of data contained on this sheet is subject to the restrictions on the front sheet of this document.

j. Statement of validation completion

This was out of scope of the developmental validation but its contents were considered in formulating the conclusions in chapter 10.


k. Implementation plan

This was out of scope of the developmental validation.

4 3D-Scanner: Recording of traces as 3D point clouds with the 3D-Scanner

4.1 Technical principle and reference publications

The 3D scanning technique is based on "fringe projection", in a more general framework also known as "stereo-based pattern projection" or "structured light 3D scanning". In the 3D-Forensics' 3D-Scanner a sequence of fringe patterns is projected onto the scene by a digital projector while two cameras capture them from slightly different positions. The calibrated stereo cameras allow through triangulation the determination of 3D coordinates for each surface point visible from both views. This technical approach enables the calculation of a highly resolved 3D point cloud of the scene in a similar way as capturing a photo.

Figure 2: Technical approach of the stereo based pattern projection

The technical principle is well known for more than twenty years. It has established applications in industrial quality control, medicine and cultural heritage. A broad overview of the technology can be found in:

T. Luhmann, S. Robson, S. Kyle: Close-Range Photogrammetry and 3D Imaging. $2^{\rm nd}$ Edition, 2013, De Gruyter

4.2 Performance limitations, interferences and countermeasures

Limitation / interference	Countermeasure
Measurement volume	If the object is larger than a single field of view, it is possible to make a set of multiple overlapping 3D scans (recommendation >30% overlap) and use the registration tool of the analysis software to stitch them together (distantly related to a panorama photo).

Limitation / interference	Countermeasure
Limited inclination angle	Surfaces with very steep edges cannot be captured in one single scan from top. If the steep edges contain important information, additional inclined scans can be captured. The scans can be merged by using the registration tool.
Time to scan (with handheld usage.)	The handheld usage of the 3D-Scanner is similar to a photo apparatus. When starting the 3D scan the user needs to keep the device as still as possible. Additional noise is caused by shaking. (The standard scan mode is with the quadpod. The quadpod allows a quick realization of scans with a fixed setup. It also allows the application of improved photo settings. Alternatively the 3D-Scanner can be used in combination with an appropriate tripod. Appropriate means it must be at least able to support the weight of the 3D-Scanner i.e. without falling over and to enable a field of view over the measurement scene to be scanned)
Direct sunlight	Too strong direct sunlight leads to large dropouts in the 3D point cloud. Direct sunlight shining onto the measurement surface must be shielded. Indirect sunlight is no problem.
Transparent / translucent objects (e.g. slushy snow)	The 3D scan of transparent and high translucent object surfaces leads to large dropouts in the 3D point cloud. The 3D scan of low translucent object surfaces lead to 3D points which are slightly shifted relative to the real surface. Transparent / translucent surfaces like slushy snow need to be coated with e.g. Snow Wax spray. This was not covered by developmental validation testing to date.
Specular reflecting objects (e.g. mirrors or very wet surfaces)	The 3D scan of high specular reflecting object surfaces leads to dropouts in the 3D point cloud. High specular reflecting surfaces such as very wet surface scan to be coated with e.g. Snow Wax spray or chalk spray. As above, not covered by developmental validation testing to date.
Low reflecting (dark) objects	Objects with an extremely dark surface may not reflect enough of the fringe patterns. This leads to large dropouts in the 3D point cloud. Very low reflecting surfaces can be coated with e.g.

Limitation / interference	Countermeasure
	Snow Wax spray or chalk spray. As above, not covered by developmental validation testing to date.
Dark and bright objects in one scene	Object surfaces with very dark and very bright regions in one scene may not be captured with one single brightness settings. It results in dropout in one or the other region.
	The user can do multiple scans with two or more different brightness settings and use the registration tool of the analysis software to stitch them together.
Artefacts on the border of the field of view.	The 3D data can be corrupted by small artefacts directly on the border of the field of view, due to limitations of the pattern projection unit. This effect occurs mainly when the 3D-Scanner is used handheld.
	When it comes to the further processing and analysis of the 3D data in a 3D analysis software, the user can mask points on the border of the field of view using manual or automatic selection tools.
Spike artefacts in the scan data	Above mentioned limitations (e.g. small specular reflecting objects in the scene), can cause local artefacts in the form of spikes. These are clearly separable from the valid scan data. The user should check the data visually for any kind of artefacts. The analysis software allows to mask the regions.

4.3 Reviewed end user requirements and related specifications

The standard mode to use the 3D-Scanner is by putting it on the associated quadpod or fixing it on a tripod. This use mode achieves the best results. If the circumstances do not allow the usage of the quadpod or a tripod (e.g. through limited space at the crime scene), the 3D-Scanner can be used handheld. Handheld scans have typically a lower quality in terms of resolution and accuracy because shaking by the user causes additional noise in the 3D data. The scanner control software provides a distinct scan mode, with slightly different parameter settings for the handheld scan and 3D data reconstruction that mitigate shaking errors. The specifications, that "affect the result", were tested primarily in the standard mode. The influence on scan results by handheld use was also investigated for most specifications as well.

	End user requirement - description	Specification
[1.1]	Local resolution - ability to resolve identification characteristics found in footwear / tyre impressions as good as plaster casting (or better)	< 200 µm

[1.2]	Accuracy LME and Accuracy PE - ability to measure distances in the outsole / profile	< 50 μm
[1.3]	Robustness resolution, - resistance of the resolution to small variations in method parameters and environmental conditions (e.g. working distance, orientation of scanner, brightness setting).	Small variations without influence Effects of larger variations must be known
[1.4]	Robustness accuracy - resistance of the accuracy to small variations in method parameters and environmental conditions (e.g. working distance, orientation of scanner, brightness setting).	Small variations without influence Effects of larger variations must be known
[1.5]A	Repeatability resolution - scan results should be stable / precise. (Measurement uncertainty / standard deviation of resolution)	<±50 μm
[1.5]B	Repeatability accuracy - scan results should be stable / precise. (Measurement uncertainty / standard deviation of accuracy)	<±20 µm
[1.6]A	Reproducibility resolution - scan results should be independent from user. (Measurement uncertainty / standard deviation of resolution)	<±50 μm
[1.6]B	Reproducibility accuracy - scan results should be independent from user. (Measurement uncertainty / standard deviation of accuracy)	<±20 μm
[1.7]	Range of inclination angle - capturing steep boundaries of deep impressions	0 60°

Other end user requirements do not directly have an "effect on the result", but define relevant limitations, interferences and necessary user competences:

	End user requirement	Specification
[1.8]	Range - Field of View / Measurement volume	≥ 300 x 200 x 50 mm³
[1.9]	Working distance	> 300 mm (contactless)

	End user requirement	Specification
[1.10]	Brightness setup - ability to measure on any kind of underground in which impression traces can occur (snow, mud, etc.)	brightness pre-settings
[1.11]	Usability - easy handling of the 3D-scanner means in simple words to "measure with one touch of a button" and to provide an output result that is understandable for a layman	Scan starts with one button (measurement modes and brightness pre-settings)
[1.12]	Use feedback - preview of 3D-patch and the colour photo is shown, the user has to evaluate the quality, e.g. holes	Projection of a green or red box by projector (PRO) signals a technical successful scan 3D-patch preview Photo preview
[1.13]	Mobility - main application field of the 3D-scanner is outdoor measurements in arbitrary surroundings using it as a hand-held sensor head	Handheld 3D-Scanner No (or easy-to-use) additional equipment
[1.14]	Time to scan - quick enough to allow handheld scans	≤ 200 ms
[1.15]	Thermal robustness - usability at typical outdoor conditions	-10 – 40°C working temperature
[1.16]	Moisture - usability at typical outdoor conditions	< 80% air moisture
[1.17]	Moisture/dust - usability at typical outdoor conditions	IP44
[1.18]	Shock resistance - Usability at typical outdoor conditions	IK04
[1.19]	Surrounded light - usability at daytime	< 10,000 lux (cloudy day, shadow, not in direct light)
[1.20]	Maintenance - long-life device with stable functional parameters	> 1 year
[1.21]	Quality control - verify the functionality of the device at the crime scene	Test specimen (to be used at crime scene)

4.4 Developmental validation test results – summarised overview⁴⁰

4.4.1 Limit of resolution and repeatability measurement precision⁴¹

To investigate the <u>resolution</u> and <u>repeatability measurement precision</u> of the 3D-Scanner a specimen was manufactured in Rescor ceramic "Dark" material which is similar to a dark matt surface, representing an ideal surface for optical 3D scanning regarding reflection characteristics.

The test specimen has embossed and indented bar and dot structures varying in width and depth/height in 15 steps (Figure 3).

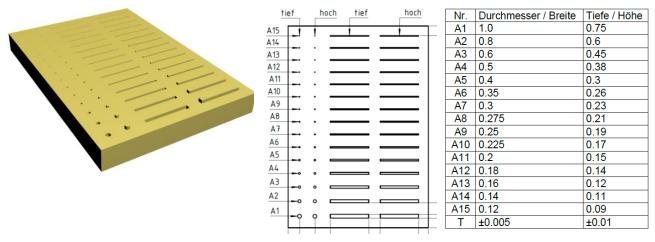
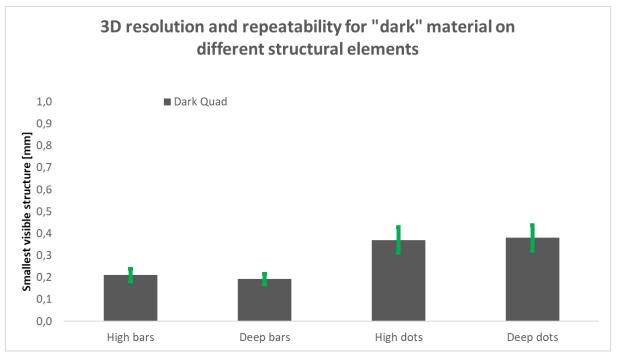


Figure 3: 3D resolution specimen layout⁴²


Using standard operational parameters indoors (specimen located in centre of field of view at nominal working distance, brightness is set to an appropriate value), 1 engineer experienced in using the 3D-Scanner made 10 quadpod scans of the specimen. Results are provided in Figure 4.

⁴⁰ Full results in Annex 4.

⁴¹ Test case series: 3DFFTI_TC_1a.

⁴² Tief=depth, hoch=height, Durchmesser=diameter, Breite=breadth, Tiefe=depths, Höhe=heights.

Use, duplication or disclosure of data contained on this sheet is subject to the restrictions on the front sheet of this document.

Figure 4: 3D resolution and repeatability as range between best and worst value for Rescor ceramic "Dark" material on different structural elements

Scan mode and highest / lowest resolution (structure)		Arithmetic mean (mm)			Worst value of 10 [mm]
Highest resolution	Indented bars	0.192	± 0.023	0.180	0.200
Lowest resolution	Indented dots	0.380	± 0.058	0.350	0.400

The highest and lowest measured resolutions of each material are presented in Table 5.

 Table 5 Highest and lowest resolutions achieved with "Dark" specimen

4.4.2 Limit of inclination angle for recording data⁴³

To investigate the <u>range of inclination angle for recording data</u> with the 3D-Scanner, 1 engineer experienced in using the 3D-Scanner made 1 quadpod scan test of a special specimen (sphere normal, diameter 80 mm). All other operational parameters were standard.

⁴³ Test case series: 3DFFTI_TC_2.

Use, duplication or disclosure of data contained on this sheet is subject to the restrictions on the front sheet of this document.

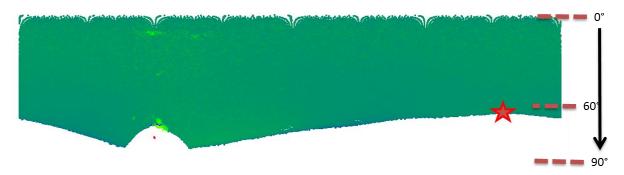


Figure 5: Enrolled view of the measured sphere in sphere coordinate system

The minimum inclination angle which could be captured was $\geq 64.4^{\circ}$. Most parts of the sphere are captured with an even larger inclination angle. The 64.4° is the worst case. The limit of the inclination angle is majorly determined by the positions of the stereo cameras in the 3D-Scanner, which are defined by design. Thus, the variance between specific devices is here negligible.

4.4.3 3D accuracy and repeatability measurement precision

4.4.3.1 Test 1 – Circle board⁴⁴

To investigate the <u>3D accuracy in terms of length measurement error (LME)</u> and <u>probing error</u> (<u>PE)</u> and <u>corresponding repeatability measurement precision</u>, 1 engineer experienced in using the 3D-Scanner made 10 quadpod scans of the 3D-Scanner's calibration circle board (Figure 6). All other operational parameters were standard.

The positional deviations relative to the centre circle were extracted out of the 3D data for the remaining 18 circles. The averaged deviations representing the 3D accuracy in terms of LME are provided in Figure 7. The uncertainty for LME represents the stability (standard deviation) of the measured circle positions over 10 measurements.

In a homogenous region of ca. 40 x 40 mm² of the circle board (see Figure 6) the 3D accuracy in terms of PE was determined by evaluating the standard deviation of the 3D points relative to the plane (planarity of the circle board is <5 μ m). The uncertainty for PE represents the stability of the measured plane deviation over 10 measurements.

⁴⁴ Test case series: 3DFFTI_TC_3a.

Use, duplication or disclosure of data contained on this sheet is subject to the restrictions on the front sheet of this document.

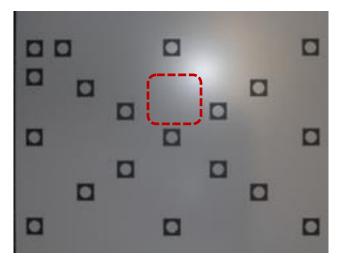
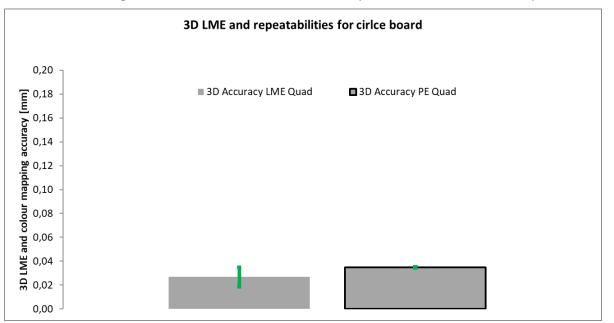



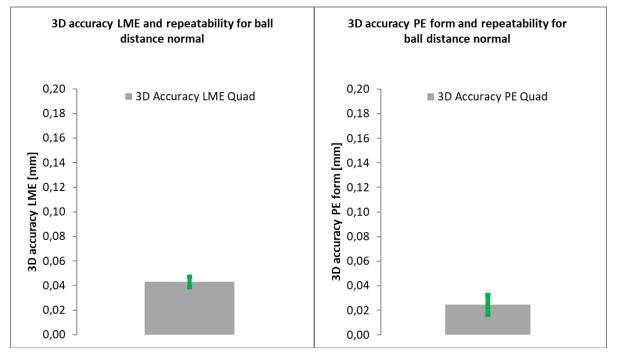
Figure 6: 3D-Scanner calibration board (red area - evaluation of PE)

Figure 7: 3D LME, PE and repeatability with range derived from measurement uncertainty for circle board

Average length measurement error LME and average probing error PE are less than 0.05 mm.

4.4.3.2 Test 2 - Ball sphere distance normal test⁴⁵

To investigate the <u>3D accuracy in terms of length measurement error (LME)</u> and <u>probing error</u> (PE) and corresponding <u>repeatability measurement precision</u>, 1 engineer experienced in using the


⁴⁵ Test case series: 3DFFTI_TC_4a.

Use, duplication or disclosure of data contained on this sheet is subject to the restrictions on the front sheet of this document.

700829 — 3D-Forensics/FTI — H2020-FTIPilot-2015-1 SECURITY: PU 3D-Forensics/FTI Developmental Validation

3D-Scanner made 10 quadpod scans of a special specimen (ball/sphere distance normal, distance of sphere centres ca. 200mm). All other operational parameters were standard.

Two spheres are fitted into the 3D data. The PE is determined by the form deviation of the 3D points to the ideal spheres (standard deviation). The LME is determined by calculating the distance between the two sphere centre points. Results are provided in Figure 8.

Figure 8: 3D accuracy LME and PE and repeatability with range derived from measurement uncertainty for ball distance normal

Average length measurement error LME and average probing error PE are less than 0.05 mm.

4.4.4 Influences on the 3D measurement (robustness)

4.4.4.1 Challenging materials / surface characteristics

4.4.4.1.1 Limit of resolution and repeatability measurement precision⁴⁶

To investigate the <u>resolution</u> and <u>repeatability measurement precision</u> of the 3D-Scanner for challenging materials / surface characteristics two specimens were manufactured in materials with representative reflection properties:

- Macor ceramic "White", which is translucent, has similar reflectivity/diffraction as snow (not ideal for optical 3D scanning)
- Aluminium "Metallic", which is reflective, imitates a wet shiny surface (not ideal for optical 3D scanning)

⁴⁶ Test case series: 3DFFTI_TC_1a.

Use, duplication or disclosure of data contained on this sheet is subject to the restrictions on the front sheet of this document.

Each of the test specimens has embossed and indented bar and dot structures varying in width and depth/height in 15 steps (**Figure 9**, below, *the same as for the tests in section 0 and Figure 3 above*).

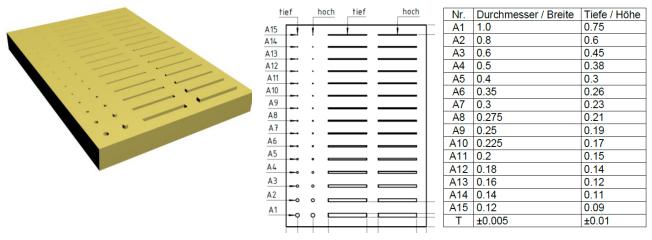


Figure 9: 3D resolution specimen layout⁴⁷

Using standard operational parameters indoors, 1 engineer experienced in using the 3D-Scanner made 10 quadpod scans of each of the two specimens. Results are provided in Figure 10.

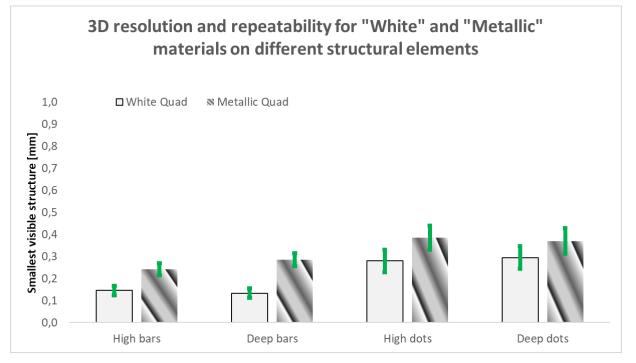


Figure 10: 3D resolution and repeatability as range between best and worst value for Macor ceramic "White" and Aluminium "Metallic" materials on different structural elements.

⁴⁷ Tief=depth, hoch=height, Durchmesser=diameter, Breite=breadth, Tiefe=depths, Höhe=heights.

Use, duplication or disclosure of data contained on this sheet is subject to the restrictions on the front sheet of this document.

The highest and lowest measured resolutions of each material are presented in Table 6 and Table 7.

Scan mode and highest / lowest resolution (structure)			p=95% (mm)	Best value of 10 [mm]	
Highest resolution	Indented bars	0.134	± 0.022	0.120	0.140
Lowest resolution	Embossed dots	0.295	± 0.051	0.275	0.350

Table 6 Highest and lowest resolutions achieved with "White" specimen

Scan mode and highest / lowest resolution (structure)			p=95% (mm)		Worst value of 10 [mm]
Highest resolution	Embossed bars	0.243	± 0.027	0.225	0.250
Lowest resolution	Embossed dots	0.385	± 0.054	0.350	0.400

Table 7 Highest and lowest resolutions achieved with "Metallic" test specimen

4.4.4.2 User / device – reproducibility measurement precision

4.4.4.2.1 Resolution⁴⁸

To investigate the <u>resolution</u> and <u>reproducibility measurement precision</u> of the 3D-Scanner the 3 specimens described above were also used. Using standard operational parameters indoors, after a short training, 9 Crime Scene Investigators and 1 experienced engineer from 4 organisations in 2 different countries made 1 quadpod scan of each of the 3* specimens (*8 *(rather than 9) Crime Scene Investigators and 1 experienced engineer for the Macor "White" specimen*). During the tests 3 different 3D-Scanners were used. Results are provided in Figure 11.

⁴⁸ Test case series: 3DFFTI_TC_1b.

Use, duplication or disclosure of data contained on this sheet is subject to the restrictions on the front sheet of this document.

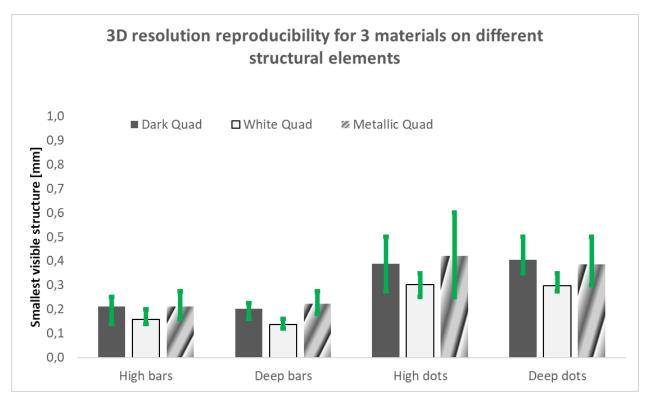


Figure 11: 3D resolution and reproducibility as range between best and worst value for 3 undergrounds on different structural elements with seven users

The highest and lowest measured resolutions are presented in Table 8, Table 9 and Table 10.						
Scan mode and highest / lowest resolutionStructureArithmetic mean (mm)Uncertainty p=95% (mm)Best value of value of 10 [mm]Worst value of value of 10 [mm]						
Highest resolution	Indented bars	0 202	+ 0.046	0 160	0 225	

0.405

0.082

0.350

0.500

Table 8 Highest and lowest resolutions achieved with "Dark" specimen (9 CSI + 1 engineer)

Indented dots

Lowest resolution

Scan mode and highest / lowest resolution (structure)			p=95% (mm)		Worst value of 10 [mm]
Highest resolution	Indented bars	0.138	±0.041	0.120	0.160
Lowest resolution	Embossed dots	0.303	±0.090	0.250	0.350

Table 9 Highest and lowest resolutions achieved with "White" specimen (9 CSI + 1 engineer)

Scan mode and highest / lowest resolution (structure)			p=95% (mm)		Worst value of 10 [mm]
Highest resolution	Embossed bars	0.211	±0.088	0.160	0.275
Lowest resolution	Embossed dots	0.420	±0.230	0.250	0.600

Table 10 Highest and lowest resolutions achieved with "Metallic" test specimen (9 CSI + 1 engineer)

4.4.4.2.2 3D accuracy, Test 1 – circle board⁴⁹

To investigate <u>3D accuracy in terms of length measurement error (LME)</u> and probing error (PE) corresponding <u>reproducibility measurement precision</u> of the 3D-Scanner, 9 Crime Scene Investigators and 1 experienced engineer from 4 organisations in 2 different countries made 1 quadpod scan of the calibration circle board. All other operational parameters were standard.

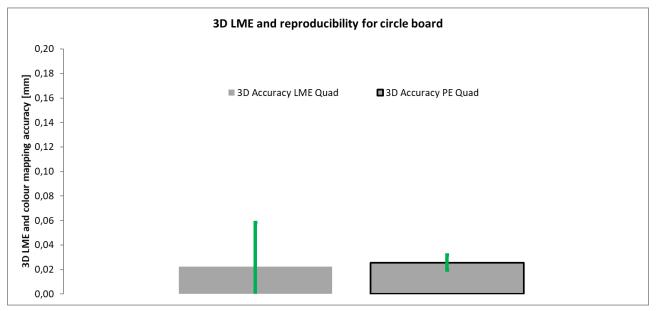


Figure 12: 3D LME, PE and reproducibility with range derived from measurement uncertainty for circle board for 10 users

Settings			Accuracy Quad		
User-ID	Device			3D accuracy PE [mm]	
IOF1	006	Quad	0.020	0.020	
YHP1	006	Quad	0.014	0.027	

⁴⁹ Test case series: 3DFFTI_TC_3b.

Use, duplication or disclosure of data contained on this sheet is subject to the restrictions on the front sheet of this document.

YHP2	006	Quad	0.016	0.024
YHP3	006	Quad	0.015	0.028
LKASA1	007	Quad	0.021	0.023
LKASA2	007	Quad	0.019	0.026
LKASA3	007	Quad	0.021	0.027
LKAMV1	008	Quad	0.021	0.026
LKAMV2	008	Quad	0.037	0.025
LKAMV3	008	Quad	0.038	0.031
3D accuracy LME [mm]			0.022	0.026
Reproducibility [mm] / [mm]			0.036	0.006

Table 11 3D LME. PE and repr	roducibility for circle boar	d and quadpod scanning with 10 users	
		a ana quaapea coanning mar re acore	

Averaged accuracy in terms of LME for the 10 users had a measurement error less than 0.025 mm for LME.

4.4.4.2.3 3D accuracy, Test 2 - MikroTrack[™] / Shoe sole⁵⁰

To investigate <u>3D accuracy in terms of probing error (PE)</u> and <u>reproducibility measurement</u> <u>precision</u>, 10 Crime Scene Investigators and 1 experienced engineer from 5 organisations in 3 different countries made 1 quadpod scan of a footwear impression recorded in MicroTrack[™] and 1 quadpod scan of a shoe sole. It is to be noted that deformation of the MikroTrack[™] between the reference scan and users' scans was apparent during tests – probably through movement of the MicroTrack[™] and the reference scan was apparent. All other operational parameters were standard. Averaged results together with minimum and maximum deviations are provided in Figure 13.

⁵⁰ Test case series:3DFFTI_TC_5b.

Use, duplication or disclosure of data contained on this sheet is subject to the restrictions on the front sheet of this document.

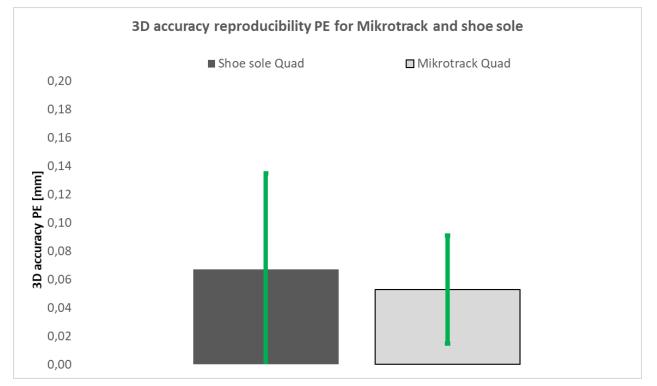


Figure 13: 3D accuracy reproducibility PE for MikroTrack[™] and shoe sole as range between best and worst value

4.4.4.3 Handheld scan mode

4.4.4.3.1 Resolution⁵¹

To investigate the influence of the handheld scan mode on the <u>resolution</u>, <u>repeatability</u> and <u>reproducibility measurement precision</u> of the 3D-Scanner the 3 specimens described above were used. Using standard operational parameters indoors 1 experienced engineer made 10 handheld scans and, after a short training, 10 Crime Scene Investigators and 1 experienced engineer from 4 organisations in 2 different countries made 1 handheld scan of each of the 3 specimens. During the tests 4 different 3D-Scanners were used. Results are provided in Figure 14 and Figure 15.

⁵¹ Test case series: 3DFFTI_TC_1aH, 3DFFTI_TC_1bH.

Use, duplication or disclosure of data contained on this sheet is subject to the restrictions on the front sheet of this document.

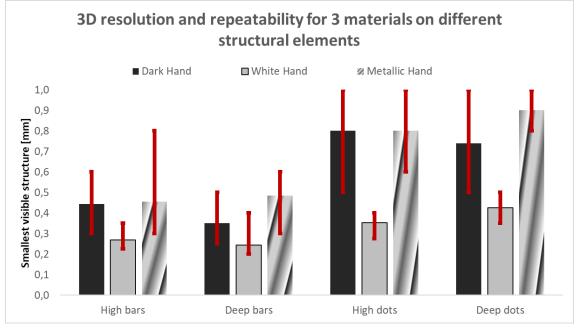


Figure 14: 3D resolution and repeatability as range between best and worst value for 3 undergrounds on different structural elements

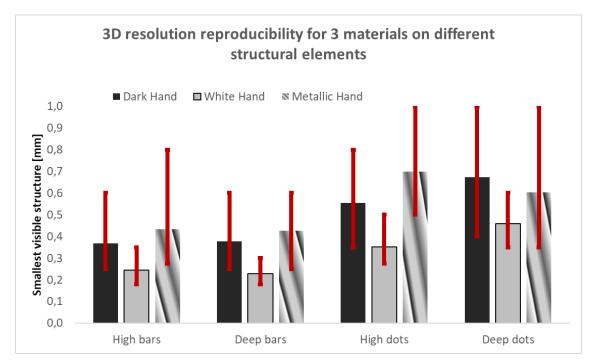


Figure 15: 3D resolution and reproducibility as range between best and worst value for 3 undergrounds on different structural elements with ten users

The 3D scan resolution and its variance is increased by factor 1.5 ... 2.0 in the handheld use mode compared to the standard use mode (quadpod). The resolution is between 0.245 mm (intended bars of "White" specimen) and 0.9 mm (intended dots of "Metallic" specimen).

4.4.4.3.2 3D accuracy, Test 1 – circle board⁵²

To investigate the influence of the handheld scan mode on the <u>3D accuracy in terms of length</u> <u>measurement error (LME)</u> and probing error (PE) corresponding <u>repeatability</u> and <u>reproducibility</u> <u>measurement precision</u> of the 3D-Scanner 1 experienced engineer made 10 handheld scans and 9 Crime Scene Investigators and 1 experienced engineer from 4 organisations in 2 different countries made 1 handheld scan of the calibration circle board. All other operational parameters were standard.

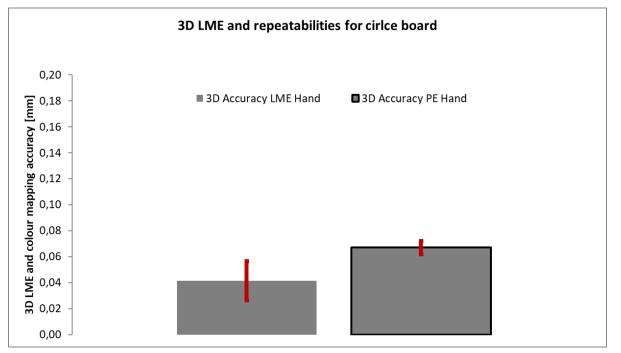
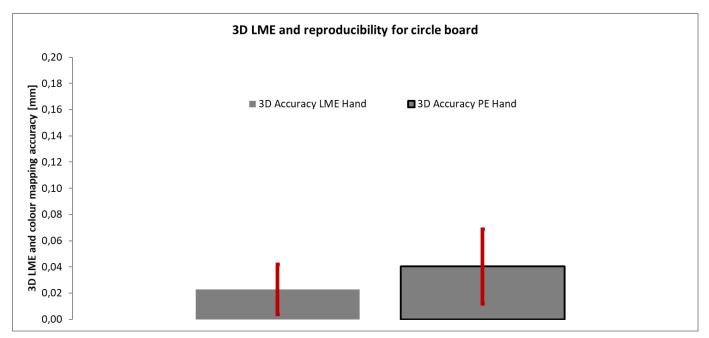
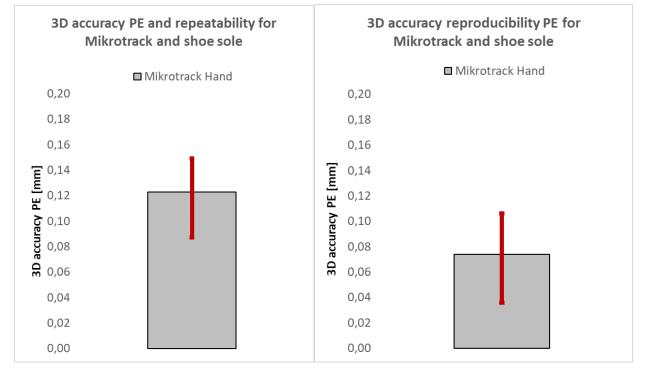



Figure 16: 3D LME, PE and repeatability with range derived from measurement uncertainty for circle board

⁵² Test case series: 3DFFTI_TC_3aH, 3DFFTI_TC_3bH.

Use, duplication or disclosure of data contained on this sheet is subject to the restrictions on the front sheet of this document.

Figure 17: 3D LME, PE and reproducibility with range derived from measurement uncertainty for circle board for 10 users


The 3D LME is on the same level for handheld use mode compared to the standard use mode (quadpod). The PE is increased by factor 2 compared.

4.4.4.3.3 3D accuracy, Test 2 - MikroTrack[™] / Shoe sole⁵³

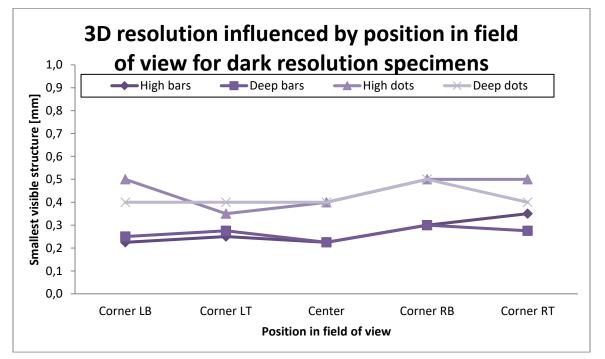
To investigate the influence of the handheld scan mode on <u>3D accuracy in terms of probing error</u> (<u>PE</u>) and <u>repeatability</u> and <u>reproducibility measurement precision</u>, 1 experienced engineer made 10 handheld scans and 10 Crime Scene Investigators and 1 experienced engineer from 5 organisations in 3 different countries made 1 handheld scan of a footwear impression recorded in MicroTrack[™]. It is to be noted that deformation of the MikroTrack[™] between the reference scan and users scans was apparent during tests – probably through movement of the MicroTrack[™] and the reference scan was apparent. All other operational parameters were standard. Averaged results together with minimum and maximum deviations are provided in Figure 19.

⁵³ Test case series:3DFFTI_TC_5aH, 3DFFTI_TC_5bH.

Use, duplication or disclosure of data contained on this sheet is subject to the restrictions on the front sheet of this document.

Figure 18: 3D accuracy repeatability and reproducibility PE for MikroTrack[™] as range between best and worst value

The 3D accuracy in terms of PE, its repeatability and reproducibility are increased by factor 2 for the handheld use mode compared to the standard use mode (quadpod).


4.4.4.4 Position of field of view

4.4.4.1 Resolution⁵⁴

To investigate the <u>robustness of recording resolution with regards to the field of view</u> of the 3D-Scanner, 1 engineer experienced in using the 3D-Scanner made 5 quadpod scans of the "Dark" rescor specimen described above in the centre and the corners of the field of view. All other operational parameters were standard. Scans were made indoors. Results are provided in Figure 19.

⁵⁴ Test case series: 3DFFTI_TC_1d1.

Use, duplication or disclosure of data contained on this sheet is subject to the restrictions on the front sheet of this document.

Figure 19: 3D resolution influenced by position in field of view for dark resolution specimens

Resolution is slightly reduced in the right hand corners.

4.4.4.4.2 3D accuracy, Test 1 – circle board⁵⁵

To investigate the <u>robustness of 3D accuracy in terms of length measurement error (LME)</u> with <u>regards to the position within the field of view</u> of the 3D-Scanner, 1 engineer experienced in using the 3D-Scanner made 10 quadpod scans of the circle board described above. All other operational parameters were standard. For the 19 circles on the board systematic positional deviations from the intended reference position were evaluated by calculating their average distance to the centre circle over the 10 scans.

circle is more than	0.04 mm too far away from center
circle is more than	-0.04 mm too far away from center

⁵⁵ Test case series: 3DFFTI_TC_3c3.

Use, duplication or disclosure of data contained on this sheet is subject to the restrictions on the front sheet of this document.

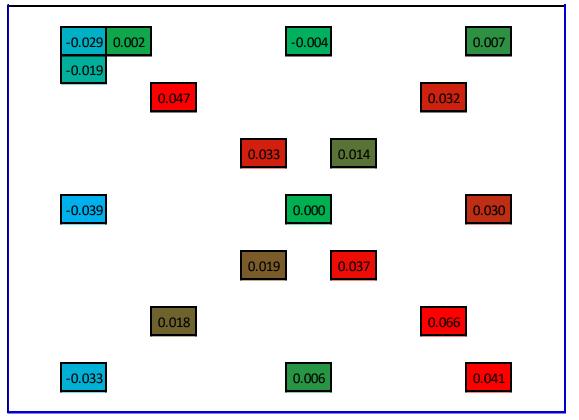


Figure 20: 3D LME and colour mapping accuracy and repeatability for circle board

Tests indicate that the lower right corner of the field of view distances are measured slightly too large while the left side of the field of view distances are slightly too small.

4.4.4.3 3D accuracy, Test 2 - ball/sphere distance normal⁵⁶

To investigate <u>robustness of 3D accuracy in terms of length measurement error (LME)</u> and <u>probing error (PE) with regards to position in field of view</u>, 1 engineer experienced in using the 3D-Scanner made 10 quadpod scans of a special specimen (ball/sphere distance normal, distance of sphere centres 200mm) in different positions according to the German Society of Engineers Guideline VDI 2634. All other operational parameters were standard.

⁵⁶ Test case series: 3DFFTI_TC_4b.

Use, duplication or disclosure of data contained on this sheet is subject to the restrictions on the front sheet of this document.

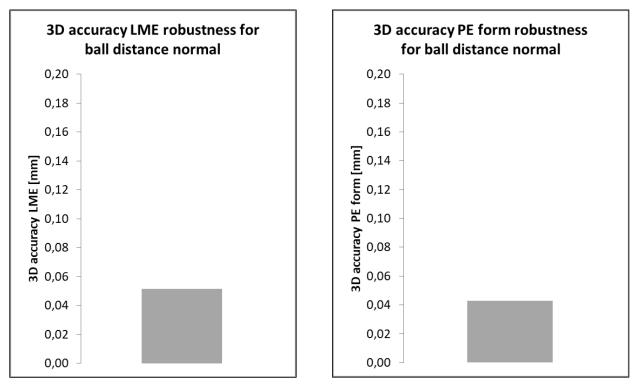


Figure 21: 3D accuracy LME and PE robustness for ball distance normal. The robustness is defined as the maximum error from all measured positions.

4.4.4.5 Working distance

4.4.4.5.1 Resolution⁵⁷

To investigate the <u>robustness of recording resolution with regards to variations in nominal working</u> <u>distance</u> of the 3D-Scanner, 1 engineer experienced in using the 3D-Scanner made 5 quadpod scans of the "Dark" rescor specimen described above at the nominal working distance (455 mm) and at +/- 25mm and +/- 50mm. All other operational parameters were standard. Scans were made indoors. Results are provided in Figure 22.

⁵⁷ Test case series: 3DFFTI_TC_1c.

Use, duplication or disclosure of data contained on this sheet is subject to the restrictions on the front sheet of this document.

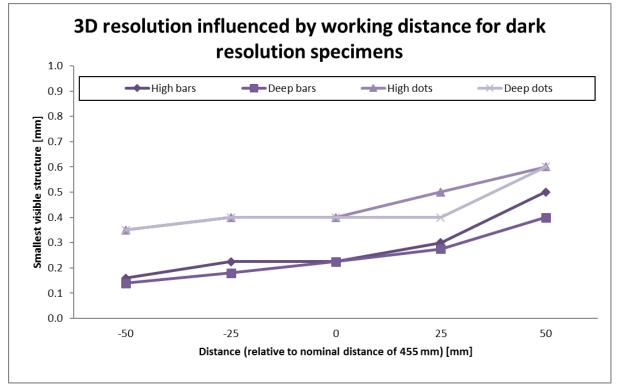
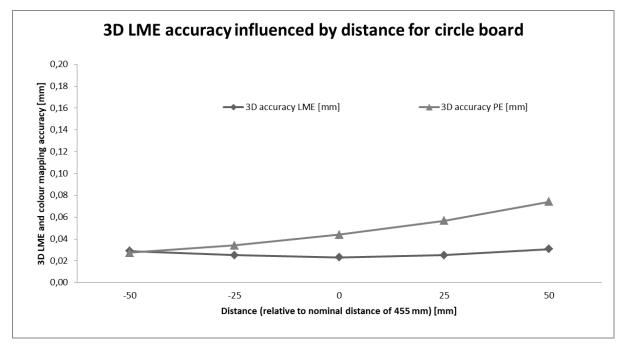


Figure 22: 3D resolution influenced by working distance for dark resolution specimens


Resolution is improved with decreased distance. At the same time the field of view is decreased with distance.

4.4.4.5.2 3D accuracy⁵⁸

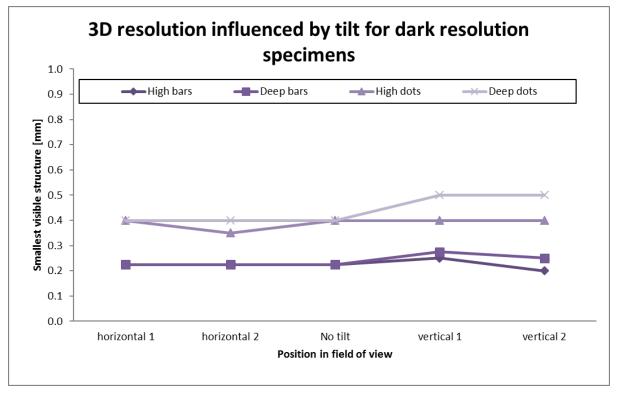
To investigate the <u>robustness of 3D accuracy in terms of length measurement error (LME)</u> and probing error (PE) <u>with regards to variations in nominal working distance</u> of the 3D-Scanner, 1 engineer experienced in using the 3D-Scanner made 5 quadpod scans of the calibration circle board described above at the nominal working distance (455 mm) and at +/- 25mm and +/- 50mm. All other operational parameters were standard. Scans were made indoors. Results are provided in Figure 23.

⁵⁸ Test case series: 3DFFTI_TC_3c1.

Use, duplication or disclosure of data contained on this sheet is subject to the restrictions on the front sheet of this document.

Figure 23 3D LME accuracy influenced by distance for circle board

The results indicate accuracy in terms of LME is not influenced by distance. The probing error PE is increasing with distance.


4.4.4.6 Tilting

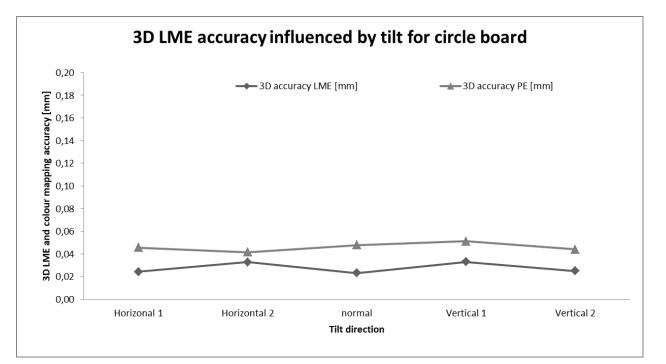
4.4.4.6.1 Resolution⁵⁹

To investigate the <u>robustness of recording resolution with regards to tilting</u> of the 3D-Scanner, 1 engineer experienced in using the 3D-Scanner made 5 quadpod scans of the "Dark" rescor specimen described above with no tilt and tilted at ca. 3-5° in the horizontal and vertical planes in both directions. All other operational parameters were standard. Scans were made indoors. Results are provided in Figure 24.

⁵⁹ Test case series: 3DFFTI_TC_1d2.

Use, duplication or disclosure of data contained on this sheet is subject to the restrictions on the front sheet of this document.

Figure 24: 3D resolution influenced by tilt for dark resolution specimens


The resolution deteriorates slightly when the structure being scanned is tilted in the vertical plane.

4.4.4.6.2 3D accuracy⁶⁰

To investigate the <u>robustness of 3D accuracy in terms of length measurement error (LME)</u> and <u>probing error (PE)with regards to tilting</u> of the 3D-Scanner, 1 engineer experienced in using the 3D-Scanner made 5 quadpod scans of the circle board described above with no tilt and tilted at ca. 3-5° in the horizontal and vertical planes in both directions. All other operational parameters were standard. Scans were made indoors. Results are provided in Figure 25.

⁶⁰ Test case series: 3DFFTI_TC_3c2.

Use, duplication or disclosure of data contained on this sheet is subject to the restrictions on the front sheet of this document.

Figure 25: 3D LME accuracy influenced by tilt for circle board

The results indicate that the 3D accuracy LME is slightly influenced by tilting the circle board but with accuracy errors below 0.05 mm.

4.4.4.7 Orientation (influence on resolution)

4.4.4.7.1 Resolution⁶¹

To investigate the <u>robustness of recording resolution with regards to orientation</u> of the 3D-Scanner relative to the structure being recorded, 1 engineer experienced in using the 3D-Scanner made 6 quadpod scans of the "Dark" rescor specimen, 3 each for orientation of the specimen in the vertical and horizontal plane. All other operational parameters were standard. Scans were made indoors. Averaged results are provided in Figure 26.

⁶¹ Test case series: 3DFFTI_TC_1d3.

Use, duplication or disclosure of data contained on this sheet is subject to the restrictions on the front sheet of this document.

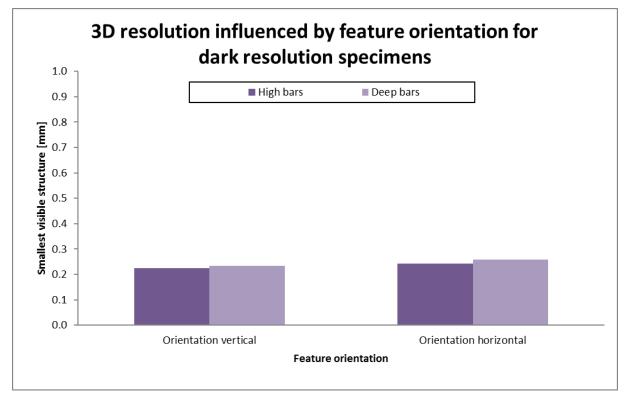


Figure 26: 3D resolution influenced by feature orientation for dark resolution specimens (for the dot structures the orientation is always same)

Tests indicate that the influence of the orientation on resolution performance is negligible.

4.4.4.8 Temperature

4.4.4.8.1 Resolution⁶²

To investigate the <u>robustness of recording resolution with regards to temperature</u> with the 3D-Scanner, 1 engineer experienced in using the 3D-Scanner made quadpod scans of the "Dark" rescor specimen at different environmental temperatures. All other operational parameters were standard. Scans were made indoors and outdoors. Results are provided in Figure 27.

⁶² Test case series: 3DFFTI_TC_1e.

Use, duplication or disclosure of data contained on this sheet is subject to the restrictions on the front sheet of this document.

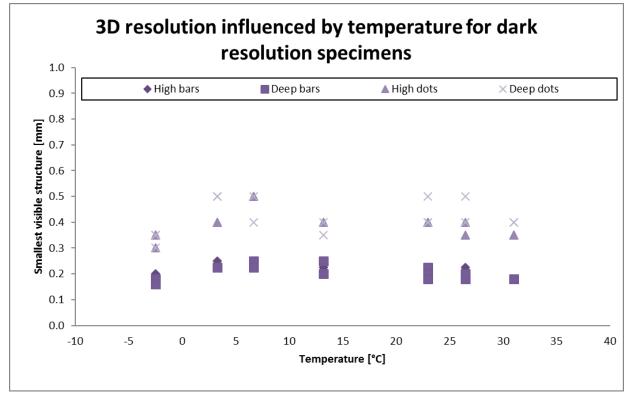
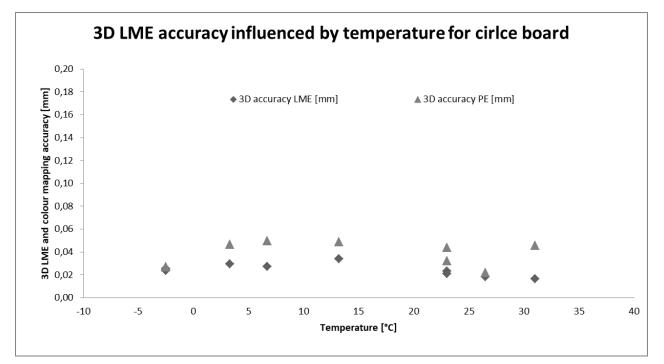


Figure 27: 3D resolution influenced by temperature for dark resolution specimens


Tests indicate the temperature influence is negligible regarding resolution.

4.4.4.8.2 3D accuracy⁶³

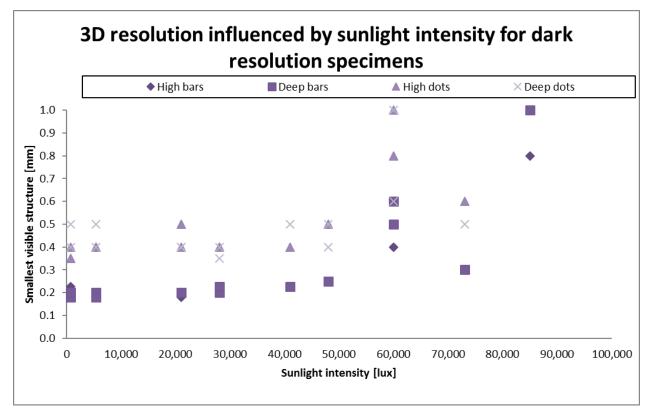
To investigate the <u>robustness of 3D accuracy in terms of length measurement error (LME)</u> and <u>probing error (PE)with regards to temperature</u> with the 3D-Scanner, 1 engineer experienced in using the 3D-Scanner made quadpod scans of the circle board varying environmental temperature. All other operational parameters were standard. Scans were made indoors and outdoors. Results are provided in Figure 28.

⁶³ Test case series: 3DFFTI_TC_3d.

Use, duplication or disclosure of data contained on this sheet is subject to the restrictions on the front sheet of this document.

Figure 28: 3D LME accuracy influenced by temperature for circle board

Tests to date indicate 3D accuracy LME and PE is not influenced by temperature.


4.4.4.9 Sunlight

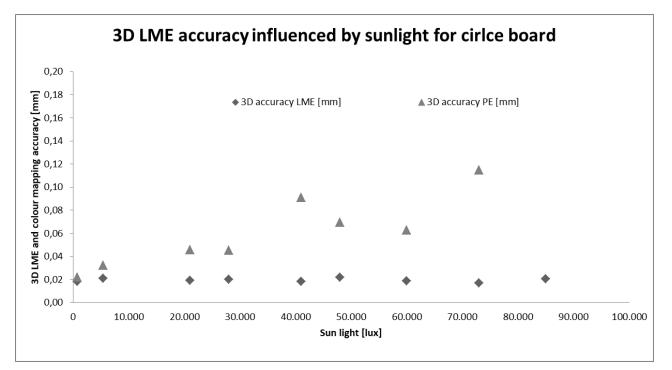
4.4.4.9.1 Resolution⁶⁴

To investigate the <u>robustness of recording resolution with regards to sunlight</u> with the 3D-Scanner, 1 engineer experienced in using the 3D-Scanner will make (tests not done yet) quadpod scans of the rescor specimen at different sun light intensities (specified in lux). All other tests made to date were with room light at approximately 500 lux if not stated otherwise. Results are provided in Figure 29.

⁶⁴ Test case series: 3DFFTI_TC_1f.

Use, duplication or disclosure of data contained on this sheet is subject to the restrictions on the front sheet of this document.

Figure 29: 3D resolution influenced by sun light for dark resolution specimens


Tests indicate the sun light is negligible regarding resolution for intensities <50,000 lux. For larger light intensities, which only occur in direct sun light, the resolution is reduced. Using a simple shielding for direct sun light reduces its intensity below 25,000 lux.

4.4.4.9.2 3D accuracy⁶⁵

To investigate the <u>robustness of 3D accuracy in terms of length measurement error (LME)</u> and <u>probing error (PE)with regards to sunlight</u> with the 3D-Scanner, 1 engineer experienced in using the 3D-Scanner made quadpod scans of the of the circle board at different sun light intensities (specified in lux). *(All other tests made to date were with room light at approximately 500 lux if not stated otherwise.)* Results are provided in Figure 30.

⁶⁵ Test case series: 3DFFTI_TC_3e.

Use, duplication or disclosure of data contained on this sheet is subject to the restrictions on the front sheet of this document.

Figure 30: 3D LME accuracy influenced by sun light intensity for circle board

Tests indicate the sun light is negligible regarding length measurement error accuracy. The probing error is increasing at a sunlight intensity of ca. 40,000 lux.

700829 — 3D-Forensics/FTI — H2020-FTIPilot-2015-1 SECURITY: PU 3D-Forensics/FTI Developmental Validation

Protocol: 3DFFTI_RPT_DV Rev. 1_1

	End user requirement	Specification	Test reference*	Assessment from developmental validation
[1.1]	3D Resolution - ability to resolve	< 200 µm	3DFFTI_TC_1a	The specified resolutions are achieved with the 3D-Scanner but recorded resolution can be lower depending on the properties of the substrate and / or the structure measured.
	identification characteristics			Countermeasures such as snow wax spray or chalk spray can be used to improve results for the challenging substrates:
	found in footwear / tyre impressions as good as plaster			 Transparent / translucent objects (e.g. slushy snow) Specular reflecting objects (e.g. mirrors or very wet surfaces) Low reflecting (dark) objects
	casting (or better)			(But, these were note covered by developmental validation testing to date.) Crime Scene Investigators (CSIs) and identification experts need to be aware of the potential limitations on 3D resolution connected with the handheld scan mode, substrate and type of structure. Manual and training must provide this information.
				It should be noted that the colour cameras available as an integral part of the system have the following resolutions: CANON EOS100D 28mm is $1px = 0.075mm$ and CANON Mark IV 50mm 1 px = 0.05mm. When working within the colour layer finer details may be resolved.
[1.2]	3D Accuracy - ability to measure distances in the outsole / profile	< 50 µm	3DFFTI_TC_3a 3DFFTI_TC_4a 3DFFTI_TC_5a	The specified accuracy was achieved with certified tests specimens and for investigations with MicroTrack [™] and a shoe sole. Crime Scene Investigators (CSIs) and identification experts need to be aware of the potential limitations on 3D Accuracy connected with the handheld scan mode. Manual and training must provide this information.

4.5 Developmental validation assessment

Protocol: 3DFFTI_RPT_DV Rev. 1_1

3D-Forensics/FTI Developmental Validation

[1.3]	3D Robustness resolution - resistance of the resolution to small variations in method parameters and environmental conditions (e.g. working distance, orientation of scanner, brightness setting).	Small variations without influence Effects of larger variations must be known	3DFFTI_TC_1aH 3DFFTI_TC_1c 3DFFTI_TC_1d	The system's resolution is robust to variations in field of view, tilting, orientation of structures. The use of the handheld scan mode reduces the resolution by factor 1.5 2. Manual and training to highlight that the resolution can be increased by using the 3D scanner at a closer distance.
[1.4]	3D Robustness accuracy - resistance of the accuracy to small variations in method parameters and environmental conditions (e.g. working distance, orientation of scanner, brightness	Small variations without influence Effects of larger variations must be known	3DFFTI_TC_3aH 3DFFTI_TC_3c 3DFFTI_TC_4b 3DFFTI_TC_5aH 3DFFTI_TC_5b 3DFFTI_TC_5bH	The system's accuracy is robust to variations in nominal working distance, field of view, tilting, and orientation of structures. The use of the handheld scan mode reduces the accuracy in terms of PE by factor 2.

Protocol: 3DFFTI_RPT_DV Rev. 1_1

3D-Forensics/FTI Developmental Validation

	setting).			
[1.5]A	3D Repeatability resolution - scan results should be stable. (Measurement uncertainty / standard deviation of resolution)	<±50 μm	3DFFTI_TC_1a 3DFFTI_TC_3a 3DFFTI_TC_4a 3DFFTI_TC_5a	 Resolution repeatability measurement precision (tests 3DFFTI_TC_1a) was better than <±50 µm with an uncertainty (confidence interval 95%) of between 0.029mm and 0.058mm. For reflective surfaces (aluminium test specimen) and dot structures the standard deviation was above <±100 µm. Countermeasures such as snow wax spray or chalk spray can be used to improve results for the challenging substrates: Transparent / translucent objects (e.g. slushy snow) Specular reflecting objects (e.g. mirrors or very wet surfaces) Low reflecting (dark) objects Crime Scene Investigators (CSIs) and identification experts need to be aware of the potential limitations on resolution repeatability for handheld scans depending on substrate and type of structure. Manual and training must provide this information.
[1.5]B	3D Repeatability accuracy - scan results should be precise. (Measurement uncertainty / standard deviation of accuracy)	<±20 μm	3DFFTI_TC_1a 3DFFTI_TC_3a 3DFFTI_TC_4a 3DFFTI_TC_5a	3D accuracy repeatability measurement precision was within the targeted specifications. It was not above a standard deviation of 0.008mm.
[1.6]A	3D Reproducibility	<±50 μm	3DFFTI_TC_1b	Resolution reproducibility measurement precision (tests 3DFFTI_TC_1b) varied for the bar structures between 0.036 mm and

Protocol: 3DFFTI_RPT_DV Rev. 1_1

3D-Forensics/FTI Developmental Validation

	resolution - scan results should be independent from user. (Measurement uncertainty / standard deviation of resolution)		3DFFTI_TC_3b 3DFFTI_TC_5b	0.088 mm. Crime Scene Investigators (CSIs) and identification experts need to be aware of the potential limitations on resolution reproducibility depending on substrate and type of structure or in case the handheld scan mode is used. Manual and training must provide this information.
[1.6]B	3D Reproducibility accuracy – scan results should be independent from user. (Measurement uncertainty / standard deviation of accuracy	<±20 μm	3DFFTI_TC_1b 3DFFTI_TC_3b 3DFFTI_TC_5b	3D accuracy reproducibility measurement precision was within the targeted specifications (for the 9 valid user tests for the tests with the certified specimens). It was not above an uncertainty (confidence level 95%) of 0.036mm. For investigations with MicroTrack [™] and a shoe sole this was achieved only with the MicroTrack [™] . Results with MicroTrack [™] and shoe sole may be explained by the less accurate nature of the test.
[1.7]	3D Range of inclination angle - capturing steep boundaries of deep impressions	0 60°	3DFFTI_TC_2	Range of inclination angle is 0…>64.4°
[1.8]	Range	≥ 300 x 200 x 50	Observation	325 x 200 x 100 mm ³

Protocol: 3DFFTI_RPT_DV Rev. 1_1

3D-Forensics/FTI Developmental Validation

	(Measurement volume) - ability to capture a footwear impressions in one scan	mm ³		
[1.9]	Working distance	> 300 mm (contactless)	Observation	455 mm
[1.10]	Brightness setup - ability to measure on any kind of underground in which impression traces can occur (snow, mud, etc.)	Brightness pre- settings	Observation	7 exposure steps and 7 LED brightness settings
[1.11]	Usability - easy handling of the 3D-scanner means in simple words to "measure with one touch of a button" and to provide an output result that is understandable	Scan starts with one button (measurement modes and brightness pre- settings)	Observation	2 measurement modes

Protocol: 3DFFTI_RPT_DV Rev. 1_1

3D-Forensics/FTI Developmental Validation

	for a layman			
[1.12]	User feedback after 3D-scan - preview of 3D- patch and the colour photo is shown, the user has to evaluate the quality, e.g. holes	3D-patch preview Photo preview	Observation	Quick and extended 3D-preview separate photo preview
[1.13]	Mobility / handling / scanner size - main application field of the 3D- scanner is outdoor measurements in arbitrary surroundings using it as a hand-held sensor head	Handheld 3D- Scanner No (or easy-to- use) additional equipment	Observation	Easy-to-use quadpod, 3D-Scanner also attachable on an appropriate tripod. As indicated above, appropriate means it must be at least able to support the weight of the 3D-Scanner i.e. without falling over and to enable a field of view over the measurement scene to be scanned Optionally handheld use mode no additional equipment Crime Scene Investigators (CSIs) and identification experts need to be aware of the potential limitations in case the handheld scan mode is used.
[1.14]	Time to scan - Quick enough to allow handheld scans	≤ 200 ms	Observation	≥ 133,3 ms
[1.15]	Thermal	-10 – 40°C	3DFFTI_TC_1e	System is robust to variations in environmental temperature.

Protocol: 3DFFTI_RPT_DV Rev. 1_1

3D-Forensics/FTI Developmental Validation

	robustness - usability at typical outdoor conditions	working temperature	3DFFTI_TC_3d	(Range not fully tested to date - but there was no indication that the system does not work within these specifications.)
[1.16]	Moisture - usability at typical outdoor conditions	< 80% air moisture	Observation	< 80% air moisture
[1.17]	Protection class - usability at typical outdoor conditions	IP44	Observation	IP22 (feedback from EETG members indicates that this is acceptable)
[1.18]	Shock resistance - usability at typical outdoor conditions	IK04	Observation	IK04
[1.19]	Surrounded light - usability at daytime	< 10,000 lux (cloudy day, shadow, not in direct light)	3DFFTI_TC_1f 3DFFTI_TC_3e	System is robust to sunlight intensity below 50,000 lux. For larger intensities the user should use an auxiliary means to shield direct sun light.
[1.20]	Frequency of technical maintenance - long-life device with stable functional parameters	> 1 year	Observation	> 1 year– based on development status/assessment in June 2019. Experience with first products will confirm and or update this specification.

Protocol: 3DFFTI_RPT_DV Rev. 1_1

3D-Forensics/FTI Developmental Validation

[1.21]	Quality control - verify the functionality of the device at the crime scene	Test specimen (to be used at crime scene)	Observation	Calibration board
--------	--	---	-------------	-------------------

* Test references are used in Annex4.

4.6 Advice for the implementation of the tool

Required quality controls:

- Verify the calibration at the crime scene using the dedicated calibration board
- Regular check all 3 months of the calibration in laboratory using the dedicated calibration board
- Regular maintenance once in a year and re-calibration by manufacturer

Required competence / training:

- Read and follow user manual
- Half-day training is recommended
- Necessary user competences:
 - o Adjusting the working distance before scanning
 - Setting an appropriate brightness before scanning
 - Knowledge how (and in which situation) to make a set of multiple overlapping scans
 - Training / experience for assessing the scan quality in the 3D preview
 - Visually assess the objects' surface whether it falls into the category mentioned under limitations

5 3D-Scanner: Mapping of external colour images onto 3D point clouds

5.1 Technical principle and reference publications

Colour images are taken by an attached high resolution camera simultaneously with the 3D measurement. They can be later mapped onto the 3D point cloud to distinguish between characteristics in the impression trace and distortions such as small stones or leaves and to assess higher resolution details in the colour images. The external camera is calibrated relative to the 3D point cloud. This calibration can be updated automatically with the dedicated calibration board.

T. Luhmann, S. Robson, S. Kyle: Close-Range Photogrammetry and 3D Imaging. $2^{\rm nd}$ Edition, 2013, De Gruyter

5.2 Performance limitations, interferences and countermeasures

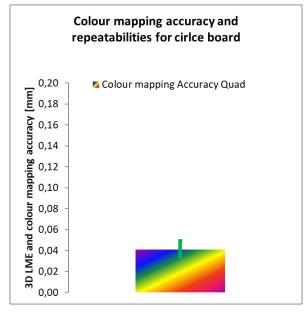
Limitation / constraint	Countermeasure
Non-coloured areas through parallax between 3D sensor and colour camera can occur in steep regions of the object	Multiple scans, including inclined scans, can be merged by using the registration tool.
Limited depth of focus	Adjustable through aperture size
Large shaking between 3D scan and photo capture with handheld use (also connected with Time to scan)	Use standard scan mode with quadpod or an appropriate tripod
Mechanical robustness of camera	Re-calibration through scanning the calibration board.

5.3 Reviewed end user requirements and related specifications

Digital photo capturing itself can be seen as validated, because it is widely used in crime scene investigation.

	End user requirement	Specification /			
[2.1]	Accuracy - accurate alignment between colour photo and 3D data	< 1 3D point pitch (170 µm)			
[2.2]	Robustness accuracy - resistance to small variations in method parameters and environmental conditions (e.g. working distance, orientation of scanner).	Small variations without influence Effects of larger variations must be known			
[2.3]	Repeatability (Accuracy) - alignment should be stable. (Measurement uncertainty / standard deviation of accuracy)	<±50 µm			
[2.4]	Reproducibility (Accuracy) - alignment should be independent from user. (Measurement uncertainty / standard deviation of accuracy)	<±50 µm			
[2.5]	Range (Field of view FOV) - ability to colour the complete 3D point cloud	≥ than FOV of 3D-Scanner			

Other end user requirements do not directly have an "impact on the result", but define relevant limitations, interferences and necessary user competencies:


	End user requirement	Specification
[2.6]	Time to scan - quick enough to allow handheld scans without a relevant misalignment between 3D scan and photo	20 ms (but improved photo settings are possible)
[2.7]	Thermal robustness - stability of camera alignment at typical outdoor conditions (in Europe)	-10 +40°C
[2.8]	Quality control - verify the calibration of the camera alignment at the crime scene	Calibration board

5.4 Developmental validation test results – summarised overview

5.4.1 Colour mapping accuracy and corresponding repeatability measurement precision⁶⁶

To investigate <u>Colour mapping accuracy</u> and <u>corresponding repeatability measurement precision</u>, 1 engineer experienced in using the 3D-Scanner made both 10 quadpod scans of the 3D-Scanner's calibration circle board (Figure 6). All other operational parameters were standard. The colour camera was the CANON Mark IV 50mm (1px \triangleq 0.05mm).

The positional deviations between mapped circle centres from the colour image and the corresponding circle centre in the 3D data represent the colour mapping error. Results are provided in Figure 31.

Figure 31: 3D LME and colour mapping accuracy and repeatability for circle board

Average colour mapping accuracy is clearly below the point pitch distance of the 3D scans of 0.17 mm so that no misalignment between 3D and colour data would be visible.

⁶⁶ Test case series: 3DFFTI_TC_3a.

Use, duplication or disclosure of data contained on this sheet is subject to the restrictions on the front sheet of this document.

5.4.2 Influences on colour mapping (robustness)

5.4.2.1 User / device

5.4.2.1.1 Colour mapping accuracy and reproducibility measurement precision⁶⁷

To investigate <u>colour mapping accuracy</u> and corresponding <u>reproducibility measurement precision</u> of the 3D-Scanner, 9 Crime Scene Investigators and 1 experienced engineer from 4 organisations in 2 different countries made 1 quadpod of the calibration circle board. All other operational parameters were standard. 2 organisations used the CANON EOS100D 28mm colour camera and the other organisation the CANON Mark IV 50mm. The spatial resolution of the CANON EOS100D 28mm is 1px = 0.075 mm and for the CANON Mark IV 50mm it is 1px = 0.05mm.Results are provided in Figure 32.

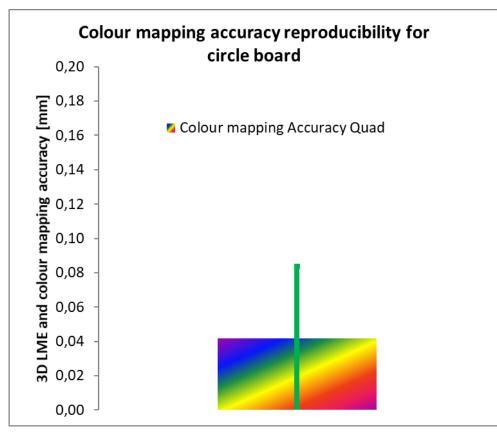


Figure 32: Colour mapping accuracy reproducibility for circle board for 10 users

⁶⁷ Test case series: 3DFFTI_TC_3b.

Use, duplication or disclosure of data contained on this sheet is subject to the restrictions on the front sheet of this document.

	Accuracy Quad				
User-ID	Device	Mode	Colour mapping accuracy [mm]		
IOF1	006	Quad	0.032		
YHP1	006	Quad	0.031		
YHP2	006	Quad	0.028		
YHP3	006	Quad	0.029		
LKASA1	007	Quad	0.068		
LKASA2	007	Quad	0.066		
LKASA3	007	Quad	0.065		
LKAMV1	008	Quad	0.035		
LKAMV2	008	Quad	0.031		
LKAMV3	008	Quad	0.032		
Colour mapping	0.042				
Reproducibility	0.042				

 Table 12 Colour mapping accuracy reproducibility for circle board and quadpod scanning with 10 users

Averaged accuracy for the 10 users had a measurement error less than 0.05 mm for colour mapping. As the point pitch distance of the 3D scan is ca. 0.17 mm no visible misalignment between colour photo and 3D data will appear.

5.4.2.2 Handheld scan mode

5.4.2.2.1 Colour mapping accuracy and reproducibility measurement precision⁶⁸

To investigate the influence of the scan mode on <u>colour mapping accuracy</u> and corresponding <u>repeatability</u> and <u>reproducibility measurement precision</u> of the 3D-Scanner, 1 experienced engineer made 10 handheld scans and 9 Crime Scene Investigators and 1 experienced engineer from 4 organisations in 2 different countries made 1 handheld scan of the calibration circle board. All other operational parameters were standard. 2 organisations used the CANON EOS100D 28mm colour camera and the other 2 organisations the CANON Mark IV 50mm. The spatial resolution of the CANON EOS100D 28mm is 1px = 0.075 mm and for the CANON Mark IV 50mm it is 1px = 0.05mm.Results are provided in Figure 33.

⁶⁸ Test case series: 3DFFTI_TC_3aH, 3DFFTI_TC_3bH.

Use, duplication or disclosure of data contained on this sheet is subject to the restrictions on the front sheet of this document.

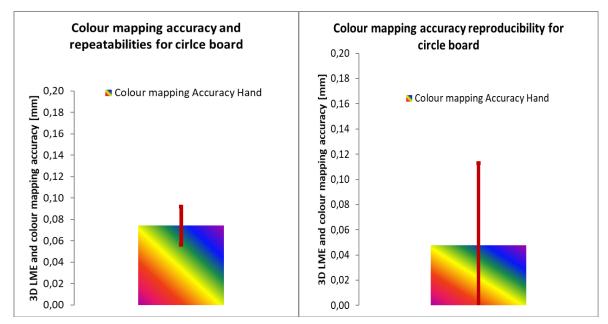


Figure 33: Colour mapping accuracy repeatability and reproducibility for circle board for 10 users

Averaged accuracy is increased compared to the results in standard scan mode. Different devices (with different photo cameras) show larger variance of the colour mapping accuracy. However there will still be no visible misalignment between colour photo and 3D data.

5.4.2.3 Position in field of view⁶⁹

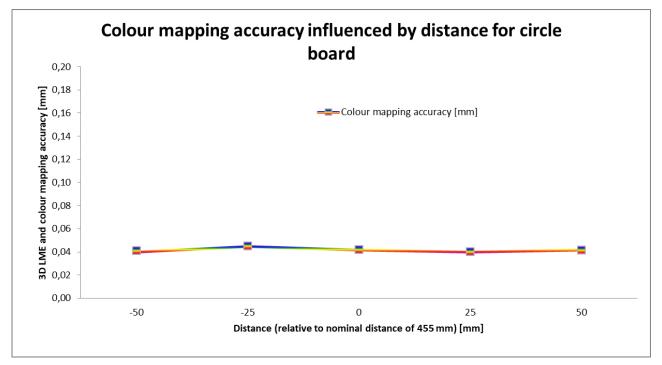
To investigate the <u>robustness of colour mapping accuracy</u> with <u>regards to the position within the</u> <u>field of view</u> of the 3D-Scanner, 1 engineer experienced in using the 3D-Scanner made 10 quadpod scans of the circle board described above. All other operational parameters were standard. For the 19 circles on the board systematic positional deviations between the circle centre positions in the 3D point cloud and the projected colour photo were evaluated by calculating their average distance to the centre circle over the 10 scans.

⁶⁹ Test case series: 3DFFTI_TC_3b.

Use, duplication or disclosure of data contained on this sheet is subject to the restrictions on the front sheet of this document.

	circle is mor	circle is more than		mm too	oo far away from center			
	circle is mor	circle is more than		mm too	n too far away from center			
Scheme of ci	rcle board							
0,064 0,06	3		0,117				0,086	
0,056								
	0,082					0,035		
			-					
		0,049	_	0,014				
0,041			0,006				0,043	
			-					
		0,026	_	0,044				
	0,065					0,060		
0,116			0,114				0,083	

Figure 34: Colour mapping accuracy with regards to field of view for circle board


Tests indicate that the top and bottom side of the field of view deviations are measured slightly increased.

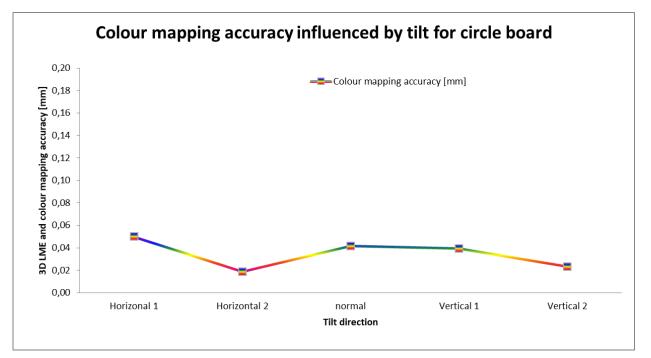
5.4.2.4 Working distance⁷⁰

To investigate the <u>robustness of colour mapping accuracy with regards to variations in nominal</u> <u>working distance</u> of the 3D-Scanner, 1 engineer experienced in using the 3D-Scanner made 5 quadpod scans of the calibration circle board described above at the nominal working distance (455 mm) and at +/- 25mm and +/- 50mm. All other operational parameters were standard. The colour camera was the CANON Mark IV 50mm. Scans were made indoors. Results are provided in Figure 35.

⁷⁰ Test case series: 3DFFTI_TC_3c1.

Use, duplication or disclosure of data contained on this sheet is subject to the restrictions on the front sheet of this document.

Figure 35: Colour mapping accuracy influenced by distance for circle board


The results indicate accuracy is not influenced by distance

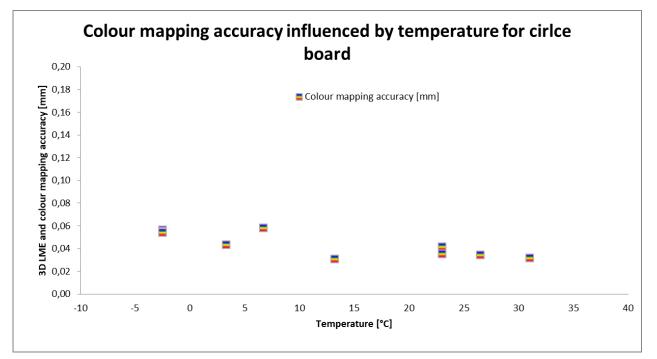
5.4.2.5 Tilting⁷¹

To investigate the <u>robustness of colour mapping accuracy with regards to tilting</u> of the 3D-Scanner, 1 engineer experienced in using the 3D-Scanner made 5 quadpod scans of the circle board described above with no tilt and tilted at ca. 3-5° in the horizontal and vertical planes in both directions. All other operational parameters were standard. The colour camera was the CANON Mark IV 50mm. Scans were made indoors. Results are provided in Figure 36.

⁷¹ Test case series: 3DFFTI_TC_3c2.

Use, duplication or disclosure of data contained on this sheet is subject to the restrictions on the front sheet of this document.

Figure 36: Colour mapping accuracy influenced by tilt for circle board


The results indicate that the colour mapping accuracy is slightly influenced by tilting the circle board but with accuracy errors below 0.05 mm.

5.4.2.6 Temperature⁷²

To investigate the <u>robustness of colour mapping accuracy with regards to temperature</u> with the 3D-Scanner, 1 engineer experienced in using the 3D-Scanner made quadpod scans of the circle board varying environmental temperature. All other operational parameters were standard. Scans were made indoors and outdoors. Results are provided in Figure 37.

⁷² Test case series: 3DFFTI_TC_3d.

Use, duplication or disclosure of data contained on this sheet is subject to the restrictions on the front sheet of this document.

Figure 37: Colour mapping accuracy influenced by temperature for circle board

Tests to date indicate colour mapping accuracy is slightly influenced.

5.4.2.7 Sunlight⁷³

To investigate the <u>robustness of colour mapping accuracy with regards to sunlight</u> with the 3D-Scanner, 1 engineer experienced in using the 3D-Scanner made quadpod scans of the of the circle board at different sun light intensities (specified in lux). (All other tests made to date were with room light at approximately 500 lux if not stated otherwise.) Results are provided in Figure 38.

⁷³ Test case series: 3DFFTI_TC_3e.

Use, duplication or disclosure of data contained on this sheet is subject to the restrictions on the front sheet of this document.

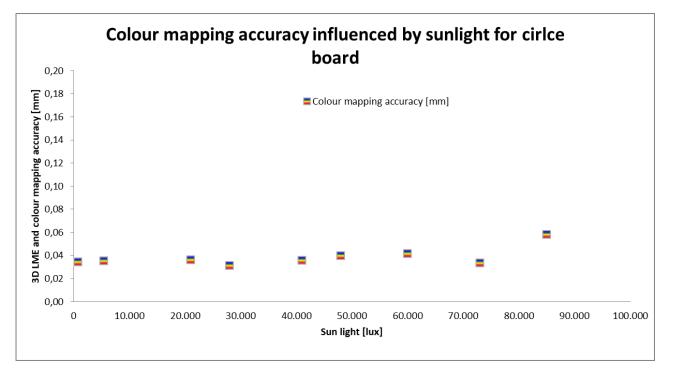


Figure 38: Colour mapping accuracy influenced by sun light intensity for circle board

Tests indicate the sun light is negligible regarding colour mapping accuracy.

700829 — 3D-Forensics/FTI — H2020-FTIPilot-2015-1 SECURITY: PU 3D-Forensics/FTI Developmental Validation

Protocol: 3DFFTI_RPT_DV Rev. 1_1

	End user requirement	Specification	Test reference*	Assessment from developmental validation
[2.1]	Accuracy - accurate alignment between colour photo and 3D data	< 1 3D point pitch (170 µm)	3DFFTI_TC_3a	The results were all within the targeted specifications.
[2.2]	Robustness accuracy - resistance to small variations in method parameters and environmental conditions (e.g. working distance, orientation of scanner).	Small variations without influence Effects of larger variations must be known	3DFFTI_TC_3c 3DFFTI_TC_3aH 3DFFTI_TC_3bH	System is robust to variations in working distance, tilting, and orientation of structures. Results in handheld scan mode were all within targeted specifications.
[2.3]	Repeatability (Accuracy) - alignment should be stable. (Measurement	<±50 μm (0,05mm)	3DFFTI_TC_3a	The results were all within the targeted specifications.

5.5 Developmental validation assessment

700829 — 3D-Forensics/FTI — H2020-FTIPilot-2015-1 SECURITY: PU

Protocol: 3DFFTI_RPT_DV Rev. 1_1

3D-Forensics/FTI Developmental Validation

	uncertainty / standard deviation of accuracy)			
[2.4]	Reproducibility (Accuracy) - alignment should be independent from user. (Measurement uncertainty / standard deviation of accuracy)	<±50 μm (0,05mm)	3DFFTI_TC_3b 3DFFTI_TC_5b	3D accuracy reproducibility measurement precision were all within the targeted specifications (for the 10 valid user tests).
[2.5]	Range (Field of view FOV) - ability to colour the complete 3D point cloud	≥ than FOV of 3D-Scanner	Observation	340 x 250 mm ³
[2.6]	Time to scan - quick enough to allow handheld scans without a relevant misalignment between 3D scan and	20 ms (but improved photo settings are possible)	Observation	Settable by user or Automatic mode

700829 — 3D-Forensics/FTI — H2020-FTIPilot-2015-1 SECURITY: PU

Protocol: 3DFFTI_RPT_DV Rev. 1_1

3D-Forensics/FTI Developmental Validation

	photo			
[2.7]	Thermal robustness - stability of camera alignment at typical outdoor conditions (in Europe)	-10 +40°C	3DFFTI_TC_3d	System is robust to variations in environmental temperature. (Range not fully tested to date - but there was no indication that the system does not work within these specifications.)
[2.8]	Quality control, verify the calibration of the camera alignment at the crime scene	Calibration board	Observation	Calibration board

* Test references are used in Annex4.

5.6 Advice for the implementation of the tool

Required quality controls:

- Regular check each 3 months of the calibration in laboratory using the calibration board
- Check of the calibration at the crime scene and recalibrate the external camera alignment
- Regular maintenance once in a year and re-calibration by manufacturer or by themselves

Required competence / training:

- Read and follow user manual
- Knowledge about appropriate camera settings for handheld photos
- Knowledge about relation between depth of focus and aperture size for camera

6 3D analysis software: Visualisation of 3D point clouds on a PC

6.1 Technical principle and reference publications

The rendering engine fully exploits the latest technologies in OpenGL based 3D rendering, maximizes the throughput in the full range of graphics cards available on the market. It also fully utilizes the modern opengl programmable pipeline to implement shaders which allow deferring computations onto the graphic card and minimizing the data exchange between CPU memory and GC memory.

* https://www.khronos.org/registry/OpenGL-Refpages/gl4/

6.2 Performance limitations, interferences and countermeasures

Limitation / constraint	Countermeasure
Artefacts in the original 3D or colour data	Visually control of the raw data by the user
Provide proper light to the rendered scene	Tool to adjust the light settings ⁽¹⁾

Note 1: light setting can be optionally applied by the user to emphasise details

6.3 Reviewed end user requirements and related specifications

	End user requirement	Specification
[3.1]	Resolution - ability to resolve specific geometric features in a point cloud	≤ resolution of 3D point cloud
[3.2]	Specificity 3D - only geometric features, which are present in the 3D point cloud, are emphasized	No artificial features are created

6.4 Developmental validation test results – summarised overview

6.4.1 Resolution and specificity⁷⁴

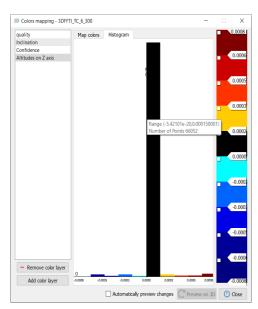
In order to investigate resolution and specificity reproducibility a visualization test was made with simulated 3D point clouds of the resolution specimen with different point pitch distances. Different point pitch distances were used to simulate the data from different 3D sensors and demonstrate the same behaviour on different PCs of the rendering engine.

To run the test a project containing the following 6 point clouds was created, with 6 different point pitch distances as listed here below (Table 13):

⁷⁴ Test case series: 3DFFTI_TC_6_1400_neigh100, 3DFFTI_TC_6_700, 3DFFTI_TC_6_350, 3DFFTI_TC_6_250, 3DFFTI_TC_6_200.

Use, duplication or disclosure of data contained on this sheet is subject to the restrictions on the front sheet of this document.

Name	Point pitc	h distance
1400	37.5 µm	point pitch
700	75 µm	point pitch
350	150 µm	point pitch
300	175 µm	point pitch
250	200 µm	point pitch
200	260 µm	point pitch


Table 13 6 point clouds with 6 different point pitches

The 6 point clouds were rendered in 3 different computers with the following graphic cards (**Table 14**):

Computer	Graphic card
PC1	NVIDIA PRO 2000
PC2	GeForce 560 Ti
PC3	Quadro M2000M

Table 14 3 Graphic cards used

The 6 simulated scans were rendered with height colour layers to be independent from material reflectivity according to the colour classes reported in the following histogram (see Figure 39)

Figure 39: Histogram of the height colour map applied to the 6 simulated scans

During the rendering in the 3 independent PC, light effects were disabled in order to put all the users in the same conditions.

As reported in the test sheet in Annex 4, no significant differences between different PCs in the display of the same 3D clouds were detected. A statistical evaluation is not required.

As a clarification, the datasets 1400, 700, ... 200 simulate datasets from different 3D-Scanners with different resolution (point pitch distances). The coarser point pitches do not allow the resolution of the smallest structures (because they were not captured by the scanner, not through a limitation in the software).

700829 — 3D-Forensics/FTI — H2020-FTIPilot-2015-1 SECURITY: PU 3D-Forensics/FTI Developmental Validation

Protocol: 3DFFTI_RPT_DV Rev. 1_1

6.5 Developmental validation assessment

	End user requirement	Specification	Test reference*	Assessment from developmental validation
[3.1]	Resolution - ability to resolve specific geometric features in a point cloud	≤ resolution of 3D point cloud	3DFFTI_TC_6	Features in the size of the point pitch distance of the 3D data can be visualized. The ability to resolve specific geometric features is independent from the PC characteristics (Graphic card) where the 3D Forensic analysis software is installed.
[3.2]	Specificity 3D - only geometric features, which are present in the 3D point cloud, are emphasized	No artificial features are created	3DFFTI_TC_6	The usage of 3 different PC / graphic cards demonstrates that no artificial features are created.

* Test references are used in Annex 4.

6.6 Advice for the implementation of the tool

Required quality controls:

• None

Required competence / training:

• Some knowledge / experience concerning measurement artefacts

7 3D analysis software: Registration of 3D point clouds

7.1 Technical principle and reference publications

Scans registration is performed in a two steps procedure: i) a manual pre-registration to approximately overlap two scans, ii) cloud to cloud registration based on the Iterative Closest Point (ICP) algorithm (Besl, 92). It requires that an estimation of the relative position between two scans is known a-priori (manual pre-registration). Based on this estimation the algorithm searches for each point in one scan and the closest point in the other scan and uses the corresponding point pairs to compute a new relative position between the scans. This process is repeated iteratively until the relative position of the scans converges.

Besl, P. J. and McKay, N. D., 1992. A method for registration of 3-D shapes. IEEE Trans. Pattern Analysis and Machine Intelligence, 14(2): 239-256.

Limitation / constraint	Countermeasure
Min. 35% overlap, sufficient geometric structure	Put target marks into the scene, if 35% overlap not possible
	Fine registration error given in the software to be checked to be < 0.05 mm (accuracy level of the scanner)
	Check the registration result visually for errors.
Manual pre-registration to initialize the ICP	Interactive tool to select min. 3 common point between two overlapping scans
	Pre-registration error given in software to be checked to be < 19.5 mm
	Fine registration error given in the software to be checked to be < 0.05 mm (accuracy level of the scanner)
	Check the registration result visually for errors.
Artefacts in the original 3D	Visual control of the raw data (and if necessary masking of artefacts)

7.2 Performance limitations, interferences and countermeasures

7.3 Reviewed end user requirements and related specifications

	End user requirement	Specification
[4.1]	Accuracy - alignment of point clouds results in no visible transition border.	< accuracy of 3D-Scanner
[4.2]	Robustness - resistance to small variations in method parameters and environmental conditions (e.g.	Small variations without influence

	manual pre-alignment).	
[4.3]	Repeatability (Accuracy) - alignment should be stable. (Measurement uncertainty / standard deviation of accuracy)	< 50 µm
[4.4]	Reproducibility (Accuracy) - alignment should be independent from user. (Measurement uncertainty / standard deviation of accuracy)	< 50 µm
[4.5]	Range - point clouds require low overlapping area.	30-50%
[4.6]	Quality control - resulting deviation of the alignment is logged. / Error resistance	Output the alignment error

7.4 Developmental validation test results – summarised overview

7.4.1 3D accuracy and reproducibility measurement precision⁷⁵

To investigate 3D accuracy and repeatability measurement precision 2 scans of a shoe impression (2 portions) with a ca. 50% overlap were imported into the 3D Forensic analysis software (not aligned) and pre-processed (see Figure 40).

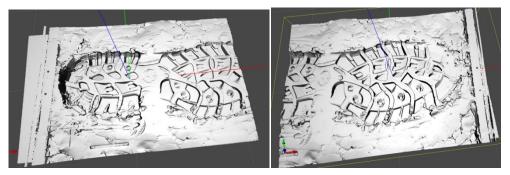
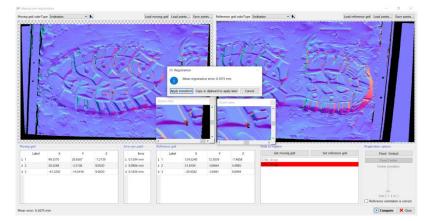



Figure 40: a) and b): show two overlapping scans covering a shoe impression

The investigation consisted of 4 independent tests carried out by 3 identification experts and 1 engineer in two steps:

⁷⁵ Test case series: 3DFFTI_7_Registration_1 to 3DFFTI_7_Registration_4, 3DFFTI_TC7_Registration_Results.

Use, duplication or disclosure of data contained on this sheet is subject to the restrictions on the front sheet of this document.

I. Manual preregistration by selecting 3 common points between the 2 clouds (Figure 41)

Figure 41: Manual pre-registration step

II. ICP automatic fine registration (see Figure 42)

Drag and drop here the doud	nce scan	Performing terative search of corresponding points, teration=68, mean , error: 0.0421 mm
	ng scan	Performing terative search of corresponding points, teration=69, mean
//00_10	ny scan	error: 0.0420 mm Performing iterative search of corresponding points, iteration=70, mean
		error: 0.0419 mm
		Performing iterative search of corresponding points, iteration=71, mean error: 0.0419 mm
		Performing iterative search of corresponding points, iteration=72, mean
		error: 0.0418 mm
		Performing iterative search of corresponding points, iteration=73, mean error: 0.0418 mm
		Performing iterative search of corresponding points, iteration=74, mean
	Registration	× hts. teration=75, mean
		its, teratori-73, filear
	-	
	Mean re	egistration error: 4.16272e-5 [m] nts, teration=76, mean
	Mean re	egistration error: 4.16272e-5 [m] nts, iteration=76, mean nts, iteration=77, mean
	Mean re Apply transform	nts, iteration=77, mean
		Copy in dipboard to apply later Cancel Its, iteration=77, mean Its, iteration=78, mean
		ts, teration=77, mean Copy in cipboard to apply later Cancel error: UU416 mm
		Copy in cipboard to apply later Cancel Its, teration=77, mean rs, teration=77, mean rs, teration=78, mean rs, teration=78, mean row (m) = 4.16272e-51 Iteration: 78 Used points = 20179 (4000
		Copy in dipboard to apply later Cancel Its, iteration=77, mean Its, iteration=78, mean
		Copy n dpboard to apply later Cancel Is, teration=77, mean error: ULMID mm is, teration=78, mean is, teration=78, mean Mean error [m] = 4.16272e.5 Iteration: 78 Used points = 20179 (4000) Matching hotogram 400 Matching hotogram
Defense in	Apply transform	Copy in dipboard to apply later Cancel Is, terator=77, mean error: UU410 mm Ks, terator=78, mean Ks, terator=78, mean Mean emrr [m] = 4.16272e.51 Iterator: 78 Used points = 20179 (4000 Meding lobogram Metching lobogram 20179 (4000 Modeling lobogram 20129 (2000) Metching lobogram
Start from preregistrat	Apply transform	Copy in dipboard to apply later Cancel is, teraton=77, mean is, teraton=78, mean is, teraton=
Start from preregstra	Apply transform	Copy n dpboard to apply later Cancel IS, teration=77, mean error: ULMID mm Mean error [m] = 4.16272e 5 Iteration: 78 Used points = 20179 (4000 Natching histogram
Start from preregistra	Apply transform	Copy in dipboard to apply later Cancel IS, teration=77, mean its, teration=78, mean error :0.9410 mm Mean error [m] = 4.15272e5 Iterator: 78 Used points = 20179 (4000 Metching hetsgram

Figure 42: Automatic fine registration with IPC algorithm

As reported in the test sheet in Annex 4 the fine registration reaches a value between 4.16×10^{-2} mm and 4.29×10^{-2} mm which is the limitation through the noise in the 3D scan data (accuracy $\leq 5.0 \times 10^{-2}$ mm).

The test results confirm that the alignment is stable. (Of course, 4 tests are not statistically significant, but the variance is extremely small.)

Use, duplication or disclosure of data contained on this sheet is subject to the restrictions on the front sheet of this document.

7.4.2 3D accuracy and robustness against preregistration error⁷⁶

Using the same test procedure as described in 7.4.1, an engineer made 6 further tests with different pre-registration errors, which taking into consideration also the tests in 7.4.1 were ordered between a minimum of 0.1075 mm to a maximum of 19.523 mm. The fine registration converged to accuracy comparable to the scan accuracy between 4.06×10^{-2} mm and 4.99×10^{-2} mm.

The test results confirm the resistance to small variations in method parameters (such as the manual pre-alignment). In case of large manual preregistration error the user can easily verify the error and is able to improve the quality of this starting phase.

⁷⁶ Test case series: 3DFFTI_7_Registration_5 to 3DFFTI_7_Registration_10, 3DFFTI_TC7_Registration_Results.

Use, duplication or disclosure of data contained on this sheet is subject to the restrictions on the front sheet of this document.

700829 — 3D-Forensics/FTI — H2020-FTIPilot-2015-1 SECURITY: PU 3D-Forensics/FTI Developmental Validation

Protocol: 3DFFTI_RPT_DV Rev. 1_1

	End user requirement	Specification	Test reference*	Assessment from developmental validation to date
[4.1]	Accuracy- alignment of point clouds results in no visible transition border.	< accuracy of 3D- Scanner	3DFFTI_TC_7	After the fine registration process the registration error is on the level of the accuracy of the scan data.
[4.2]	Robustness - resistance to small variations in method parameters and environmental conditions (e.g. manual pre- alignment).	Small variations without influence	3DFFTI_TC_7	Starting from larger pre-registration error (up to 19.523 mm) the fine registration converges to low values (4.99x10 ⁻² mm).
[4.3]	Repeatability (Accuracy) - (Measurement uncertainty / standard deviation of accuracy)	< 50 µm	3DFFTI_TC_7	Repeatability was not tested as it is expected to be better than reproducibility which has already an extremely small variance.

7.5 Developmental validation assessment

700829 — 3D-Forensics/FTI — H2020-FTIPilot-2015-1 SECURITY: PU

Protocol: 3DFFTI_RPT_DV Rev. 1_1

3D-Forensics/FTI Developmental Validation

[4.4]	Reproducibility (Accuracy) - alignment should be independent from user. (Measurement uncertainty / standard deviation of accuracy)	< 50 µm	3DFFTI_TC_7	4 independent tests from different users converged to an average registration error of 4.23x10 ⁻² ±0.05x10 ⁻² mm.
[4.5]	Range - point clouds require low overlapping area.	30-50%	Observation	Already after the preregistration step the overlap of the 2 scans can be checked. Direction to user is at least 35% overlap.
[4.6]	Quality control -resulting deviation of the alignment is logged. / Error resistance	Output the alignment error	Observation	The final registration error is displayed.

* Test references are used in Annex 4.

7.6 Advice for the implementation of the tool

Required quality controls:

- Intermediate preregistration error to be < 19.5 mm
- Final standard deviation between scans (alignment error) to be less than < 0.05 mm

Required competence / training:

- Users should be aware to acquire 3D scans with at least 35% overlap
- Read and follow user manual
- Knowledge for assessing strong misalignment

ICP Parameters ×	3D ICP Parameters	\times
	Iniers search criteria	
Min. search distance [mm] 0.010	Min. search distance [mm] 0.001	1
Max. search distance [mm] 5.000	Max. search distance [mm] 1	9
Number of control points 40000	Number of control points 40000	
Min. control points 200	Min. control points 200	
Sufficient control points 7000	Sufficient control points 7000	-
Max. normals divergence (°) 45.00	Max. normals divergence (°) 45.00	1
Discard normals' verses False ~	Discard normals' verses False ~	
Convergence Criterion	Convergence Criterion	
Min. error change to continue (%) 0.0500	Min. error change to continue (%) 0.0500	1
Acceptable registration error[mm] 0.010000	Acceptable registration error[mm] 0.010000	1
Max. iterations 200	Max. iterations 200	9
Constraints	Constraints	
Vertical is fixed	Vertical is fixed	
Origin is not constrained	Origin is not constrained	
○ Origin is known with horizontal confidence 0.001 🛊 mm	○ Origin is known with horizontal confidence 0.001 🖨 mr	n
and vertical confidence 0.001 🖨 mm	and vertical confidence 0.001 🖨 mr	n
○ Origin is fixed	○ Origin is fixed	
Load Save Array Ok Cancel	Load Save Vok X Can	cel

Figure 43: a) default parameters, b) suggested parameters for a second iteration

Notes: The ICP best fitting converges to the noise level of the 3D data. Occasionally, in the case of higher noise levels in the scans, the first ICP iteration can converge to a "mean registration error" higher than 50 µm. In this case it is suggested to run the ICP a second time using the parameters from Figure 55 (page 162).

For particular noisy scans, the mean error can be larger than 50 μ m after the second ICP run. In this case the user should additionally check the scan alignment visually for correctness in the region of interest, e.g. by using the Screen Setting "Color by ID" or by displaying the two aligned scans in slice view (Figure 56, page 162). If visually the scans show no mismatch, also a larger mean error is acceptable.

Single scans can still be analyzed independently from the registration process to identify specific characteristics.

Use, duplication or disclosure of data contained on this sheet is subject to the restrictions on the front sheet of this document.

8 3D analysis software: Meshing of 3D points

8.1 Technical principle and reference publications

The adopted mesh technique is a per scan triangulation based on the 2D grid provided by the scanner. The neighbourhood relations are given by the 2D grid. The algorithm connects all the acquired points according to the 2D scan grid, without introducing geometrical simplifications; all the points in the original cloud are used for the mesh generation.

At the same time the scan depth discontinuities are taken into account to avoid artefact creation due to uncorrected filled gaps.

In case of a multiple scan impressions the final mesh is resulting from the sum of per scan triangulation.

Sequeira V., et al. - Automated Reconstruction of 3D Models from Real Environments, ISPRS Journal of Photogrammetry and Remote Sensing (Elsevier), vol. 54, pp. 1-22, 1999.

8.2 Performance limitations, interferences and countermeasures

Limitation / constraint	Countermeasure
Holes in 3D point cloud	Possible holes are closed at the level of the grid point cloud considering the neighbours in scan structure
False long triangles	Depth continuities are not meshed

8.3 Reviewed end user requirements and related specifications

	End user requirement	Specification
[5.1]	Accuracy - meshing of point clouds does not change the measurement data. (Deviation between mesh and point cloud is small)	< 1/10 of accuracy of 3D- Scanner
[5.2]	Specificity – only geometric features, which are present in the 3D point cloud, are also visible in the mesh.	No artificial features are created

8.4 Developmental validation test results – summarised overview

8.4.1 3D accuracy and specificity⁷⁷

During the data preparation, a fundamental step is the conversion of the acquired scan from a point cloud format to a mesh model.

⁷⁷ Test case series: 3DFFTI_TC_8_Meshing_1 to 3DFFTI_TC_8_Meshing_6.

Use, duplication or disclosure of data contained on this sheet is subject to the restrictions on the front sheet of this document.

Six different 3D models have been selected to investigate the 3D accuracy and specificity of the meshing process. The six models are shown in the test sheet in annex 4 and listed in Table 15 below. They have been selected to have representative characteristics in terms of shape, discontinuities, 3D depth that could determine inaccuracies going from point cloud to mesh models.

Mesh models
3D scan of a tyre impression (portion) on sand
3D scan of a shoe impression on MikroTrack [™]
3D scan of a shoe profile
3D scan of a shoe impression on terrain
3D scan of a tyre portion
2 scans of 2 registered scans

Table 15 6 mesh models used

The 6 models (listed in Table 15), acquired as a 3D point cloud, were converted into mesh models.

Each resulting mesh has been compared with the original cloud using a tool that measures the distance (with sign) between each point and the closest mesh triangle.

The results of the distance measurements have been plotted in a histogram to analyse possible discrepancies between the mesh and the original cloud.

From the distance measurements results, no significant differences between the original scan data and the generated uniform mesh have been identified, as reported in the test sheet in Annex 4.

The meshing algorithm is fixed and leads always to exactly the same result for the same point cloud. There is no variance and thus a statistical evaluation is not required.

700829 — 3D-Forensics/FTI — H2020-FTIPilot-2015-1 SECURITY: PU 3D-Forensics/FTI Developmental Validation

Protocol: 3DFFTI_RPT_DV Rev. 1_1

	Enduser requirement	Specification	Test reference*	Assessment from developmental validation
[5.1]	Accuracy - meshing of point clouds results does not change the measurement data. (Deviation between mesh and point cloud is small)	< 1/10 of accuracy of 3D- Scanner	3DFFTI_TC_8	Mean displacement value between point cloud and related meshes are in the order of 0.0019 mm i.e. within the specification of < 1/10 of accuracy of 3D- Scanner.
[5.2]	Specificity - geometric features, which are present in the 3D point cloud, are also visible in the mesh.	No artificial features are created	3DFFTI_TC_8	Colour coding the point clouds according to the differences between mesh and related point clouds, reveals that no artefacts are generated.

8.5 Developmental validation assessment

* Test references are used in Annex 4.

8.6 Advice for the implementation of the tool

Required quality controls:

• None

Required competence / training:

• None

9 3D analysis software: Capability to measure in data accurately

9.1 Technical principle and reference publications

The user can measure distances in the 3D models by picking manually 2 points in the 3D scene. When selecting the starting and ending point on the screen, the next full resolution point in the cloud is detected. The distance is calculated using the coordinates of the raw points in the scans.

The 3D measure between two picked points can be decomposed in x, y, z components according to the user coordinate system.

9.2 Performance limitations, interferences and countermeasures

Limitation / constraint	Countermeasure	
Imprecise selection of the starting/ending point of a distance measure	Possibility to zoom the 3D point cloud to identify the right points	
User dependent selection of points	Select points / measure distances by different users (Seek independent verification and/or peer review)	

9.3 Reviewed end user requirements and related specifications

	End user requirement	Specification
[6.1]	Measurement accuracy and repeatability of the software itself - extract correct measure given the same starting and ending point	≈ 0 µm measure error
[6.2]	Measurement accuracy and reproducibility	< 1 mm

9.4 Developmental validation test results – summarised overview

9.4.1 Measurement accuracy and repeatability of the software itself⁷⁸

To investigate the measurement accuracy the circle board was scanned and the acquired scan data was imported in the 3D-Forensics analysis software.

⁷⁸ Test case series: 3DFFTI_TC_9_measure acc.

Use, duplication or disclosure of data contained on this sheet is subject to the restrictions on the front sheet of this document.

700829 — 3D-Forensics/FTI — H2020-FTIPilot-2015-1 SECURITY: PU 3D-Forensics/FTI Developmental Validation

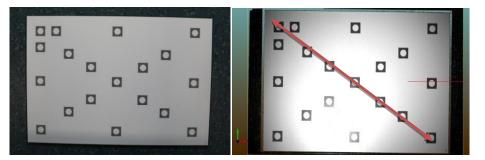


Figure 44 a) Circle board

b) Acquired scan imported in the 3D-Forensic software (the measured distance is marked)

A start/end point was univocally identified in the point cloud (from top left corner of top square to bottom right corner of square in bottom right corner) and the same start and end point was used to extract the distance value for 10 independent measurements (see Figure 44).

Exactly the same distance of 306.453 mm was measured all 10 times (standard deviation is 0). The test demonstrates that the software itself measures distances perfectly accurately and with repeatability.

9.4.2 Measurement accuracy and reproducibility⁷⁹

To investigate measurement accuracy and reproducibility, the same scan of the circle board was imported into the 3D-Forensic analysis software.

The 3D scan was rendered in 3D in an orthographic view. 10 users with different skills made the same measurement as in the investigation above with the zoom level and point cloud setting fixed (Table 16).

The users measurements were also compared to a reference measurement distance = 306.575 mm) calculated from the point cloud before the import in the analysis software.

User	Distance (mm)
User 1	306.6709
User 2	306.3039
User 3	306.7932
User 4	306.7932
User 5	306.7714

⁷⁹ Test case series: 3DFFT_TC_9_measure repr.

Use, duplication or disclosure of data contained on this sheet is subject to the restrictions on the front sheet of this document.

User 6	306.7932
User 7	306.8917
User 8	306.8917
User 9	306.8917
User 10	306.6709
Mean	306.747
Standard deviation	0.176
Measurement uncertainty	0.391

Table 16 Distances measured by 10 users, mean and standard deviation

The user's interpretation of starting and ending points causes a variance of 0.176 mm standard deviation and a measurement uncertainty of 0.391 mm. It is to be expected that this would be similar for distance measurements in other 3D or 2D analysis tools. Reproducibility is limited through the user capabilities.

Protocol: 3DFFTI_RPT_DV Rev. 1_1

	End user requirement	Specification	Test reference*	Assessment from developmental validation
[6.1]	Extract correct measure given the same starting and ending point	≈ 0 µm measure error	3DFFTI_TC_9	10 measurements = 0 μm measure error / variance.
[6.2]	Distance between the visual detectable start/ending points must be reproducible	< 1 mm	3DFFTI_TC_9	Variance (standard deviation) is 0.176 mm, measurement uncertainty is 0.391 mm, within specification -Max. displacement in 10 measures from the reference value (from another software) = -0.3167 mm Max. displacement of the mean value for 10 measures from the reference value (from another software) = -0.172 mm Reproducibility is limited through the user capabilities to select the same start and end points.

9.5 Developmental validation assessment

* Test references are used in Annex 4.

9.6 Advice for the implementation of the tool

Required quality controls:

• Select points / measure distances by different users (i.e. seek independent verification and/or peer review), depending on the level of reliance to be placed on measurements, particularly in sub-millimetre range.

Required competence / training:

• Read and follow user manual

10 Conclusions

The international standards most relevant to 3D-Forensics/FTI are ISO/IEC 17020⁸⁰ and ISO/IEC 17025.⁸¹ The International Laboratory Accreditation Cooperation (ILAC) provides guidelines on the application of these standards to forensic processes.⁸² The United Kingdom's Forensic Science Regulator (FSR) implements these guidelines in further guidance.^{83,84} 3D-Forensics/FTI orientated its validation planning, implementation, assessment and reporting of on the FSR validation process for the issues which needed to be determined with validation data. This approach was presented to EETG members and was supported with no proposal to do it differently. By targeting the requirements for validation within an accredited process, 3D-Forensics/FTI should satisfy the most stringent validation criteria within any organisation providing forensic services. The process led to the setting and carrying out of the developmental validation tests for the <u>six</u> main system tool functionalities subjected to developmental validation described in this report in chapters 4 - 9 (see Table 17).

3D-F	BD-Forensics system tools subject to developmental validation		
	Added / updated forensic tool	Replaced tool	
3D-S	3D-Scanner		
1	Recording of traces as 3D point clouds with the 3D-Scanner	Recording of traces as 2D photos with a digital camera or as "3D" plaster casts	
2	Mapping of external colour images onto 3D point clouds	None (new tool)	
3D ai	BD analysis software		
3	Visualisation of 3D point clouds on a PC	Visualisation of 2D images on a PC	
4	Registration of 3D point clouds	None (new tool)	
5	Meshing of 3D points	None (new tool)	
6	Capability to measure in data accurately	Rulers	

Table 17: Forensic tools provided by the 3D-Forensics system subject to developmental validation⁸⁵

⁸⁵ Copy of Table 4 from above.

⁸⁰ Supra: Conformity assessment - Requirements for the operation of various types of bodies performing inspection.

⁸¹ Supra: General requirements for the competence of testing and calibration laboratories.

⁸² Supra: ILAC/G19.

⁸³ Supra: FSR/Validation.

⁸⁴ Supra: FSR/Codes.

Use, duplication or disclosure of data contained on this sheet is subject to the restrictions on the front sheet of this document.

The decision to group specifications around the <u>six</u> main system tool functionalities was taken to be able to developmentally validate each functionality separately and for breaking down the complication in test planning, implementation, assessment and reporting.

Standard specimens were used when available to test specifications. However, no such specimens exist for important specifications such as 3D resolution and colour mapping accuracy. In such cases, specific specimens and approaches were worked out together with EETG members. The specimens used for testing are reported in Annex 3.

For each of these tools, the following information has been reported in chapters 4 -9:

- Technical principle and reference publications
- Performance Limitations, interferences and countermeasures
- Reviewed end user requirements and related specifications
- The developmental validation test results
- The developmental validation assessment
- Advice for the implementation of the tool

The major proportion of the tests were connected with the 3D-Scanner especially its resolution and accuracy. As the 3D-Scanner will be used outdoors, also environmental conditions such as temperature and sunlight were considered. Further the two scan modes "Handheld" and "Quadpod" were evaluated separately. Test results show clear differences, especially in terms of resolution. This led to declaring the standard scan mode to be "quadpod" and reporting the validation results accordingly. "Quadpod" means the system is in a fixed position and not susceptible to movement.

All 3D-Scanner tests connected with "Reproducibility" were executed together with users in the EETG. These tests were done with Yorkshire and The Humber Police (UK) and LKA Saxony (Germany) (Figure 45), RIS Carabinieri (Italy) and LKA Mecklenburg-Vorpommern (Germany).

Use, duplication or disclosure of data contained on this sheet is subject to the restrictions on the front sheet of this document.

Figure 45 Reproducibility testing with LKA Saxony (Germany) in January 2019.

The achieved 3D-Forensics system's product specifications as of June 2019 which the consortium is confident to report are included in Annex 2. These specifications are based on the developmental validation tests and/or internal assessment.

The key application for the 3D-Forensics/FTI system is to record and analyse footwear and tyre impressions as well as profiles left at crime scenes in 3D and colour with optical scanning technology.

Validation testing highlights the requirement for users (primarily, crime scene investigators for the 3D-Scanner and identification experts for the 3D analysis software) to be competent in the use of the system which includes understanding the limitations, interferences and countermeasures described.

Use, duplication or disclosure of data contained on this sheet is subject to the restrictions on the front sheet of this document.

Bibliography

Besl, P. J. and McKay, N. D. A method for registration of 3-D shapes, (IEEE Trans, 1992), Pattern Analysis and Machine Intelligence, 14(2): 239-256.

Forensic Science Regulator, Codes of Practice and Conduct for forensic science service providers and practitioners in the Criminal Justice System, Vers. 4.0 October 2017 (FSR 2017) (Available at: <<u>https://www.gov.uk/government/publications/forensic-science-providers-codes-of-practice-and-conduct-2017</u>> accessed 18 February 2019)

Forensic Science Regulator, *Forensic Image Comparison and Interpretation Evidence: Guidance for Prosecutors and Investigators* (FSR, Issue 1, 2015) (Available at: <<u>https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/405528/Image_Comparison_and_Interpretation_Guidance_Issue_1_160115.pdf</u>> accessed 13 July 2017)

Forensic Science Regulator, *Guidance: Validation* (FSR, Issue 1, 2014) (Available at: <<u>https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/375285/FSR-G-201_Validation_guidance_November_2014.pdf</u>> accessed 19 July 2018)

Home Office Scientific Development Branch, *Digital Imaging Procedures* p.77 (v2.1 2007) (ISBN: 978-1-84726-559-3) (Available at:

<<u>https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/378451/DIP_2.1_</u> <u>16-Apr-08_v2.3_Web_2835.pdf</u>> accessed 13 July 2017).

International Laboratory Accreditation Cooperation, *Modules in a Forensic Science Process* (Available at: <<u>http://ilac.org/?ddownload=805</u>> accessed 18 February 2019). Khronos Group *OpenGL® 4.5 Reference Pages* (2019) (Available at: <<u>https://www.khronos.org/registry/OpenGL-Refpages/gl4/</u>> accessed 29 June 2019)

Luhmann T., Robson S., Kyle S.: *Close-Range Photogrammetry and 3D Imaging*, 2nd Edition, 2013, De Gruyter

Ramotowski R., Validation in ISO 17025 Accredited Laboratories – Policy Guidance and a Recent Example of a Validation Study (2017), 102nd International Association for Identification (IAI) International Educational Conference

Sequeira V., et al. - Automated Reconstruction of 3D Models from Real Environments, ISPRS Journal of Photogrammetry and Remote Sensing (Elsevier, 1999), vol. 54, pp. 1-22.

UKAS[®] Accreditation of Bodies Carrying Out Scene of Crime Examination (edn 2, 2015) (Available at: <<u>https://www.ukas.com/download/publications/RG%20201.pdf</u>> accessed 19 July 2018).

UKAS (2012) The Expression of Uncertainty and Confidence in Measurement M3003, 3rd edition, (November 2012), (Available at: <u>https://www.ukas.com/download/publications/publications-relating-to-laboratory-accreditation/M3003_Ed3_final.pdf</u> accessed 19 July 2018

Verein Deutscher Ingenieure (VDI) (Association German Engineers), VDI-Richtlinie: VDI/VDE 2634 Blatt 1 Optische 3D-Messsysteme – Bildgebende Systeme mit punktförmiger Antastung / Optical 3D measuring systems Imaging systems with point-by-point probing (2014), (Available at: <<u>https://www.vdi.de/nc/richtlinie/vdivde_2634_blatt_1-</u>

optische_3d_messsysteme_bildgebende_systeme_mit_punktfoermiger_antastung/> accessed 18 February 2019)

700829 — 3D-Forensics/FTI — H2020-FTIPilot-2015-1 SECURITY: CO 3D-Forensics/FTI Developmental Validation Protocol: 3DFFTI_RPT_DV Rev. 1_1

3D-Forensics project, *D1.1 System parameter requirements* (2014)
3D-Forensics project, *D2.1 Technical design of the Sensor* (2014)
3D-Forensics/FTI project, *Description of Action* (2016)
3D-Forensics/FTI project, *D4.2 Report on pilot testing and validation progress* (2019)

TABLE OF STANDARDS

BS EN ISO/IEC 17020:2012, Conformity assessment - Requirements for the operation of various types of bodies performing inspection (Available at: <<u>http://www.iso.org/iso/catalogue_detail?csnumber=52994</u>> accessed 18 February 2019).

BS EN ISO/IEC 17025:2005, General requirements for the competence of testing and calibration laboratories (Available at: <<u>http://www.iso.org/iso/catalogue_detail.htm?csnumber=39883</u>> accessed 18 February 2019).

Annex 1: User requirements and specifications in answer to requirements

Explanation method to note and prioritise requirements and specifications

The user requirements and the specifications detailed in answer to the requirements are presented in tables following the template in Table 18. The *italics* provide a short clarification as to the content which is included.

ReqID	Original requirement ID set in FP7 project in 2014
Short name	Short name as set in FP7 project in 2014
Description	Short description as set in FP7 project in 2014
Priority	As set in FP7 project in 2014:
	• Essential - This implies that a future 3D-Forensics product will not be acceptable unless these requirements are provided in an agreed manner.
	 Conditional - This implies that these are requirements that would enhance the product, but would not make the product unacceptable if they were absent.
	• Optional - This implies a class of functions that may or may not be worthwhile.
Comment	Any comments relevant to transferring requirement in to specification
Specification	Specification determined from requirement as set in FP7 project in 2014
Output following review for DV	Any revisions or clarifications to requirement and/or specification following review of end user requirements, specification and risk assessment, culminating in preparation for developmental validation (DV).
DV content (Y/N), reason	Whether specification subject to developmental validation (Yes/No) with reason / clarification.
if relevant	Determined primarily by considering whether feature has impact on the reliability of the result
DV ReqID	Derived developmental validation (DV) requirement/specification ID as listed in chapters 4 to 9.

Table 18: User requirement and related specification template

3D-Scanner requirements / specifications list

ReqID	HW 1
Short name	Field of View / Measurement volume
Description	- Capture a single footwear impression in 1-2 shots to avoid registration artefacts of multiple scans with less overlap
	- Average shoe length for men is ca. 300 mm (average in Germany: EUR 44 $\ VK$ 9½)
	- Capture the track width of a tire impression in 1 shot (PKW up to 240 mm width)
	- Measurement of "flat" impressions (depth < 50 mm)
	≥ 300 x 200 x 50 mm²
Priority	Essential
Comment	n/a
Specification	≈325 x 200 x 50 mm³
Output following review for DV	No update
DV content	Y
(Y/N), reason if relevant	(Also note: positively tested already in FP7 project, no design changes affecting requirement)
DV ReqID	[1.8]

ReqID	HW 2	
Short name	Local resolution	
Description	- The scan resolution will have to be small enough to visualize even small individual characteristics that are needed to make an identification (< 200 μ m)	
	 Too little detail leaves too many questions and will devaluate the system to merely a selection tool (class characteristics) 	
	< 200 μm	
Priority	Essential	
Comment	- There must be a trade-off between the large field of view and the limited resolution of state-of-the-art cameras	
Specification	≈170 µm	
Output following	Specification revised to original requirement i.e. < 200 μm Standard operating procedure with quadpod	
review for DV	Determination of further detail requirements/specifications HW2.1-2.3, the DV requirements [1.3],[1.5]A,[1.6]A (provided directly below)	
DV content (Y/N), reason	Y	

if relevant	
DV ReqID	[1.1]

DV ReqID	Name - description	Specification
[1.3]	Robustness resolution - resistance of the resolution to small variations in method parameters and environmental conditions (e.g. working distance, orientation of scanner, brightness setting).	Small variations without influence Effects of larger variations must be known
[1.5]A	Repeatability resolution - scan results should be stable / precise. (Measurement uncertainty / standard deviation of resolution)	<±50 μm
[1.6]A	Reproducibility resolution - scan results should be independent from user. (Measurement uncertainty / standard deviation of resolution)	<±50 μm

ReqID	HW 3
Short name	Accuracy
Description	 High measurement accuracy is necessary to allow a safe determination of class and individual characteristics ≈ 50 μm
Priority	Essential
Comment	- The resulting accuracy arises from many different constraints in the scanner (local resolution, angle between cameras, projector noise,)
Specification	≈ 50 µm
Output following review for DV	Standard operating procedure with quadpod Determination of further detail requirements/specifications HW3.1-3.3, the DV requirements [1.4],[1.5]B,[1.6]B (<i>provided directly below</i>)
DV content (Y/N), reason if relevant	Y
DV ReqID	[1.2]

DV ReqID	Name - description	Specification
[1.4]	Robustness accuracy - resistance of the	Small variations without influence

	accuracy to small variations in method parameters and environmental conditions (e.g. working distance, orientation of scanner, brightness setting).	Effects of larger variations must be known
[1.5]B	Repeatability accuracy - scan results should be stable / precise. (Measurement uncertainty / standard deviation of accuracy)	<±20 μm
[1.8]	Reproducibility accuracy - scan results should be independent from user. (Measurement uncertainty / standard deviation of accuracy)	<±20 μm

ReqID	HW 4
Short name	Working distance
Description	 A large working distance makes it easier to measure in difficult accessible or narrow environments > 300 mm
Priority	Essential
Comment	- the working distance is derived from the optical magnification of the cameras and projector (their lenses), their chip size and the achieved field of view
Specification	≈480 mm
_	
Output following review for DV	Specification revised to original requirement i.e. > 300 mm
following review for	Specification revised to original requirement i.e. > 300 mm Y

ReqID	HW 5	
Short name	Warm-up time / connection time	
Description	- At a crime scene, the 3D-scanner should be ready for action in short time	
	≤ 5 min	
Priority	Conditional	
Comment	n/a	

Specification	≤ 4 min
Output following review for DV	No update
DV content (Y/N), reason if relevant	No, conditional and does not affect result
DV ReqID	n/a

ReqID	HW 6
Short name	Data storage volume
Description	- All 3D-scans that are made in one session (one crime scene situation) must be stored in one volume (typical < 20 scans)
Priority	Essential
Comment	- One 3D-dataset, including all raw and intermediate data, has a size of $<$ 500 MB
	 The storage could be made on the hard disk from the used laptop, USB-stick or SD- card.
	Update 2019: The chosen design fully integrates a PC, there is no laptop.
	 For security reasons the data should be stored encrypted
Specification	> 10 GB
Output following review for DV	No update
DV content	No, does not affect result
(Y/N), reason if relevant	(Also note: positively tested already in FP7 project, no design changes affecting requirement)
DV ReqID	n/a

ReqID	HW 7
Short name	Compatibility / 3D-data output formats
Description	- The outputted 3D point cloud should be compatible with 3D-software analysis products to enable the further analysis of the 3D-data
Priority	Conditional
Comment	n/a

Specification	- The 3D-scanner will provide a standard 3D-pointcloud file which could be imported by all 3D-analysis software: ASCII-format (text file containing XYZ-coordinates of all measured points)
Output following review for DV	No update
DV content (Y/N), reason if relevant	No, achieved by design and positively tested already in FP7 project, no design changes affecting requirement
DV ReqID	n/a

ReqID	HW 8
Short name	Brightness setup
Description	- The 3D-scanner should be able to measure on any kind of underground (snow, mud, etc.)
	 Due to the different reflectivity of the underground materials, it is necessary to adjust the brightness settings before a measurement
	 e.g. 3 – 5 pre-settings for brightness setup
Priority	Essential
Comment	- "Brightness" is determined by the luminosity of the projector as well as the integration time and gain factor of the cameras
Specification	- 7 pre-settings for brightness setup
Output following review for DV	Specification update to "brightness pre-settings"
DV content (Y/N), reason if relevant	Y
DV ReqID	[D1.10]

ReqID	HW 9
Short name	Usability / operator convenience
Description	 Easy handling of the 3D-scanner means in simple words to "measure with one touch of a button" and to provide an output result that is understandable for a layman 3 – 5 measurement modes as pre-settings
Priority	Conditional
Comment	- The 3D-Forensics prototype will contain several standard measurement modes as pre- settings (containing different fringe pattern sequences)

	- Finally, the user has to choose the measurement mode and the brightness setup before starting a measurement, then
	 The measurement itself will be started by adjusting the working distance with the laserpointers and by pushing one start-button on the sensor head
Specification	- None pre-set settings must be adapted by the user in a simple user guidance
Output following review for DV	Specification updated to "Scan starts with one button (measurement modes and brightness pre-settings)
DV content (Y/N), reason if relevant	Y
DV ReqID	[D1.11]

ReqID	HW 10
Short name	User Feedback after 3D-scan
Description	 Colour information (e.g. green or red) shows if a scan was successful (meaning that 3D-points were measured) Preview of 3D-patch and the grey photo is shown, the user has to evaluate the quality, e.g. holes
Priority	Essential
Comment	n/a
Specification	 Projection of a green or red box by projector (PRO) signals a technical successful scan Displaying of a rendered image of the 3D-scan for quality control by the user
Output following review for DV	 Specification updated to: "Projection of a green or red box by projector (PRO) signals a technical successful scan", "3D-patch preview", "Photo preview". This specification includes contributing to: Checking image quality to see if it is sufficient for a meaningful and reliable analysis⁸⁶
DV content (Y/N), reason if relevant	Y
DV ReqID	[D1.12]

⁸⁶ Forensic Science Regulator, *Forensic Image Comparison and Interpretation Evidence: Guidance for Prosecutors and Investigators* (FSR, Issue 1, 2015) p.10 (Available at: <<u>https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/405528/Image_Comparison and Interpretation_Guidance_Issue_1_160115.pdf</u>> accessed 13 July 2017).

Use, duplication or disclosure of data contained on this sheet is subject to the restrictions on the front sheet of this document.

ReqID	HW 11
Short name	Mobility / Handling outdoors / scanner size
Description	- Main application field of the 3D-scanner are outdoor measurements in arbitrary surroundings using it as a hand-held sensor head
	- The user handles only the compact sensor head to measure a scene, two handles are attached
	- An adapting plate offers the possibility to attach a tripod
	- The graphical user interface is provided by a Smartphone fixed with an armband which enables easy and fast setting of measurement parameters (brightness, measurement mode)
	- Laptop and battery are held in an extra bag or platform and do not need to be handled during the acquisition of 3D-scans
	Size of the sensor head < 300 x 300 x 300 mm ³
	Two handles on the sensor head, adapter plate for attaching a tripod
	Smartphone User Interface
	Extra platform for laptop and battery Skilled / trained user level
Drievity	
Priority	Essential
Comment	- The mobility and handling of the 3D-scanner is defined by many constraints, but mainly by its size, its weight, the attached handles and the user interface realization
	- To minimize the size and weight compact, light components need to be chosen, and to be arranged in a compact way
	- Good handling is achieved when the user is able to concurrently hold the sensor and set the scan settings, and to start a scan with a button directly at the handles
	- Integrated (i) iPC and I display (DISP) would enhance the handling and mobility of the sensor head as long as an acceptable weight and size is not exceeded
	- External (e) PC and eDISP, which do not need to be held during the scanning, could be an alternative if the iPC and iDISP exceeds an acceptable weight and size of the sensor
Specification	Mobile and easy to handle device
Output	Specification updated to: "Handheld 3D-Scanner (or easy-to-use) additional equipment"
following review for DV	Standard scan mode is with quadpod.
DV content (Y/N), reason if relevant	Y
DV ReqID	[D1.13]

ReqID	HW 12
Short name	Battery time

Description	- The battery time of the 3D-scanner must be enough to process on crime scene - The power consumption of the system will be about 100150W
	> 1 hour under working conditions
	> 6 hours in standby
	rechargeable within < 10 hours (overnight)
Comment	- Battery time is defined by the power consumption of the 3D-scanner components and the chosen battery parameters
Specification	- Overall power consumption under working conditions: ≈ 100 W
	- Overall power consumption under standby: ≈ 20 W
	- Optimizations to decrease the power consumption will be implemented (e.g. to shut down the PRO between single measurements)
Output following review for DV	No update
DV content (Y/N), reason if relevant	Ν
DV ReqID	n/a

ReqID	HW 13
Short name	Measurement rate
Description	 A high measurement rate enables fast evidence collection at one crime scene Determined by the processing time for one scan and the reset time of the 3D-scanner 3x 3D-scans / minute
Priority	Conditional
Comment	- Measurement rate is defined by the duration of one scan, time for data transfer from camera over Sensor Head Base Board (SHBB) to iPC / ePC, the data processing time and the time needed to reset the system
Specification	ca. 5x 3D-scans / minute
Output following review for DV	No update
DV content (Y/N), reason if relevant	N, conditional and does not affect result
DV ReqID	n/a

ReqID	HW 14
Short name	Time to scan (acquisition of the fringe images)
Description	 A long scanning time increases the 3D-point accuracy but could produce motion artefacts in hand-held measurements 150 – 700 ms (long scanning times will necessitate the usage of a tripod)
Priority	Essential
ТПОПЦУ	
Comment	 Time to scan is defined by the projection / acquisition frequency and the count of projected fringe patterns
Specification	Time to scan equals: 100 – 700 ms
Output following review for DV	Specification updated to "≤ 200 ms"
DV content (Y/N), reason if relevant	Y
DV ReqID	[1.14]

ReqID	HW 15
Short name	Time to final 3D-result
Description	 Processing time for calculating the 3D-object out of the scanned sequence and to provide it in a preview < 10 sec ("quasi" real time)
Priority	Conditional
Comment	 Processing time to calculate a 3D-pointcloud from a sequence of fringe images is primarily defined by the time to transfer the image data on the iPC / ePC and the processing performance
Specification	Time to final 3D-result < 8.5 sec
Output following review for DV	No update
DV content (Y/N), reason if relevant	N, conditional and does not affect result
DV ReqID	n/a

ReqID	HW 16
Short name	Transportability

Description	Covered transportation bag for the whole sensor equipment
Priority	Optional
Comment	n/a
Specification	Appropriate transportation bag
Output following review for DV	No update
DV content (Y/N), reason if relevant	N, optional and does not affect result
DV ReqID	n/a

ReqID	HW 17
Short name	Weight
Description	- A low weight of the sensor head is important for hand-held measurements to allow easy usage
	- The sensor head can also be adapted to a tripod
	< 3 kg (for the sensor head, which has to be held during a scanning procedure)
	<10 kg (for the whole equipment, which not necessarily has to be held during scanning)
Priority	Conditional
Comment	n/a
Specification	Weight of the sensor head of < 3 kg
Output	Specification update: "4.3 kg (without battery)", "5.1 kg (with battery)"
following review for DV	Standard operating procedure with quadpod
DV content (Y/N), reason if relevant	N, conditional and does not affect result
DV ReqID	n/a

ReqID	HW 18
Short name	Thermal robustness
Description	 - 3D-scanner is primarily for outdoor use and should work in an adequate temperature range - A cooling system will be implemented to avoid overheating -10 – 40°C working temperature (-40 – 60°C transportation and storage temperature)

Priority	Conditional
Comment	n/a
Specification	Working temperature between -10 – 40°C
Output following review for DV	No update
DV content (Y/N), reason if relevant	Y
DV ReqID	[1.15]

ReqID	HW 19
Short name	Moisture / Dust robustness – protection class
Description	- 3D-scanner is primarily for outdoor use and should work under typical air moisture and dust conditions
	 Usage in strong raining conditions is only possible with additional water protection (umbrella)
	< 80% air moisture
	Protection class IP 44 (protected against particles >1 mm and protected against spray water)
Priority	Conditional
Comment	- Moisture and dust robustness is defined by the robustness of the scanner housing
Specification	Air moisture robustness <80% and IP44 class
Output following review for DV	Separation of the two parts of the specification.
DV content (Y/N), reason if relevant	Y
DV ReqID	[1.16] and [1.17]

ReqID	HW 20
Short name	Mechanical robustness – shock resistance
Description	 The 3D-scanner will be protected by a plastic housing Strong mechanical vibrations and shocks should be avoided For transportation the scanner equipment is put in a vibration protected bag Protection class IK 04 (light shocks by hand, no drops) in vibration protected bag – protection class IK09

700829 — 3D-Forensics/FTI — H2020-FTIPilot-2015-1 SECURITY: CO 3D-Forensics/FTI Developmental Validation

Priority	Conditional
Comment	n/a
Specification	Protection class IK04
Output following review for DV	No update
DV content (Y/N), reason if relevant	Y
DV ReqID	[1.18]

ReqID	HW 21
Short name	Electromagnetic Compatibility
Description	Class 2
Priority	Optional
Comment	n/a
Specification	Electromagnetic compatible system of class 2
Output following review for DV	No update
DV content (Y/N), reason if relevant	N, does not affect results.
DV ReqID	n/a

ReqID	HW 22
Short name	Surrounded light
Description	 The more surrounding light, the worse for the 3D-scan 3D-scanner should work under average lightning conditions without additional equipment Additional shadow box for strong sunlight is provided 1000 lx (cloudy day), with increased light, usage of a shadow box
Priority	Essential
Comment	 Robustness against surrounded light is mainly defined by the brightness of the projector Illumination of the projector depends on its working distance
Specification	 - 3D-measurements with < 1000 lx lighting - For larger surrounded lighting a shadow box can be used
Output following review for DV	Update of specification to < 10,000 lux (cloudy day, shadow, not in direct light) (<i>Implementation of blue light, removal of use of shadow box</i>)
DV content (Y/N), reason if relevant	Y
DV ReqID	[1.19]

ReqID HW 23 Hardware costs – commercial aspect – not relevant	nt for this report
---	--------------------

ReqID	HW 24 Necessary Know-How for assembling – commercial aspect – not relevant for
	this report

ReqID	HW 25
Short name	Frequency of technical maintenance / change period of components
Description	> 1 year
Priority	Conditional
Comment	
Specification	Technical maintenance of > 1 year
Output following review for DV	No update
DV content (Y/N), reason	Y

if relevant	
DV ReqID	[1.20]

ReqID	HW 26
Short name	Sound intensity
Description	< 40 dB
Priority	Optional
Comment	n/a
Specification	Sound intensity of < 40 dB
Output following review for DV	No update
DV content (Y/N), reason if relevant	N, does not affect results.
DV ReqID	[1.19]

ReqID	HW 27
Short name	Working Life
Description	> 5 years
Priority	Conditional
Comment	- the working life of the 3D-scanner is defined by the working life of the inner sensor components and the way and frequency of how the operator handles the system
Specification	Technical maintenance of > 1 year
Output following review for DV	No update
DV content (Y/N), reason if relevant	N, does not affect results.
DV ReqID	n/a

ReqID	HW 28
Short name	Power Supply
Description	 Battery for autarchic work Power supply for recharging AC DC Adaptor (100~240 free voltage), 50/60Hz
Priority	Essential
Comment	- 3D-scanner requires a hardware interface to a power supply with an AC DC Adaptor (100~240 free voltage), 50/60Hz
Specification	AC DC Adaptor (100~240 free voltage), 50/60Hz
Output following review for DV	No update
DV content (Y/N), reason if relevant	N, does not affect results. Tested in FP7 project, no design changes affecting achievement.
DV ReqID	n/a

ReqID	HW 29
Short name	Pose acquisition
Description	- Add on of a navigation unit should be a possible enhancement option
Priority	Optional
Comment	n/a
Specification	Foreseeing of a software interface in the 3D-scanner control software
Output following review for DV	No update
DV content (Y/N), reason if relevant	N, optional.
DV ReqID	n/a

ReqID	HW 30
Short name	Calibration / Accuracy verification
Description	- Guidelines in forensics mention that calibration or test measurement on specimens before every scan have to be made to approve the accuracy and transparency of the technique
	Test specimen will be provided to scan and verify before every measurement session
Priority	Essential
Comment	n/a
Specification	Providing of a certified test specimen from which the sensor noise and the 3D accuracy can be determined
Output following review for DV	Update requirement name "Quality control" Update of specification: "Test specimen (to be used at crime scene)" This specification includes: • "Authentication" - "the data is an accurate presentation of what it purports to be." ⁸⁷ • Checking correct operation of equipment (e.g. operator adjustable settings) ⁸⁸
DV content (Y/N), reason if relevant	Υ.
DV ReqID	[1.21]

ReqID	HW 31
Short name	Easy to clean
Description	 To avoid contamination of the crime scene a cleaning of the scanner is necessary The scanner will be put in a special bag, so that it is not contaminated during storage Easy cleaning procedure will be defined
Priority	Essential
Comment	n/a
Specification	Description of appropriate cleaner and a cleaning guidance are provided
Output following review for DV	No update
DV content (Y/N), reason	N (Guidance provided in manual)

⁸⁷ Home Office Scientific Development Branch, *Digital Imaging Procedures* p.77 (v2.1 2007) (ISBN: 978-1-84726-559-3) (Available at:

<<u>https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/378451/DIP_2.1_16-Apr-08_v2.3__Web_2835.pdf</u>> accessed 13 July 2017).

⁸⁸ Ibid. p.12

Use, duplication or disclosure of data contained on this sheet is subject to the restrictions on the front sheet of this document.

if relevant	
DV ReqID	n/a

ReqID	HW 32
Short name	Depth (angle)
Description	- Steep boundaries of depth impression are more difficult to measure than plane structures
	- Is verified by measuring a test specimen
	> 60° (steeper angles can be captured by multiple measurements of one scene from different view directions and alignment of these)
Priority	Conditional
Comment	 Maximum measurable surface angle is defined by the triangulation angle between the cameras and the roughness and reflectivity of the underground
Specification	Maximum measureable angle of > 60°
Output following review for DV	No update
DV content (Y/N), reason if relevant	Y
DV ReqID	[1.7]

ReqID	HW 33
Short name	(Eye) safety
Description	 The projection unit of the 3D-scanner is an active light source Directly looking inside the light spot is not dangerous for the eyes Less dangerous than laser class 1M (≤ 500 lumen, which equals 40W light bulb)
Priority	Conditional
Comment	- Eye safety is defined by the brightness of the projector
Specification	- Eye safety less than laser class 1M - Brightness of PRO: 500 Im (equals 60 W light bulb)
Output following review for DV	No update
DV content (Y/N), reason if relevant	N, conditional does not affect the results.
DV ReqID	n/a

ReqID	HW 34
Short name	Textures \ Colour acquisition
Description	 The measurement of textures and colors additional to the 3D-information is necessary to consider leaves and twigs that distort the trace and should not be treated as any characteristic as well as to measure 2D-imprints The 3D-scanner will contain an adapter for a photo apparatus that can be attached on the top of the 3D-scanner
	 The camera (and lens) of the photo apparatus will be calibrated to the 3D-scanner in a way that the RGB photos can be plotted onto the 3D point cloud
	Adapted and calibrated photo apparatus on top
Priority	Conditional
Comment	 Following technical features lead to a possibility to measure texture / colour: Selection of photo apparatus Canon 100D in conjunction with Canon EF 28mm f/2,8 IS USM (COL) as an add-on component to the 3D-sensor Photo apparatus will be attachable onto the 3D-scanner Software interface to the photo apparatus is implemented into the control software of the 3D-sensor
Specification	Adapted and calibrated photo apparatus on top
Output following review for DV	Extension to indicate colour camera compatibility: Canon EOS 100D/200D or Canon 5D Mark IV. Determination of further detail requirements/specifications HW34.1-34.8, the DV requirements [2.1]-[2.8] (<i>provided directly below</i>)
DV content (Y/N), reason if relevant	Y
DV ReqID	[2.1]-[2.8]

DV ReqID	Name - description	Specification /
[2.1]	Accuracy - accurate alignment between colour photo and 3D data	< 1 3D point pitch (170 μm)
[2.2]	Robustness accuracy - the resistance to small variations in method parameters and environmental conditions (e.g. working distance, orientation of scanner).	Small variations without influence Effects of larger variations must be known
[2.3]	Repeatability (accuracy) - alignment should be stable. (Measurement uncertainty / standard deviation of accuracy)	<±50 μm

[2.4]	Reproducibility (accuracy) - alignment should be independent from user. (Measurement uncertainty / standard deviation of accuracy)	<±50 μm
[2.5]	Range (Field of View FOV) - ability to colour the complete 3D point cloud	≥ than FOV of 3D-Scanner
[2.6]	Time to scan - quick enough to allow handheld scans without a relevant misalignment between 3D scan and photo	20 ms (but improved photo settings are possible)
[2.7]	Thermal robustness - stability of camera alignment at typical outdoor conditions (in Europe)	-10 +40°C
[2.8]	Quality control - verify the calibration of the camera alignment at the crime scene	Calibration board

ReqID	HW 35
Short name	Location and orientation registration
Description	- The location and the orientation of footwear and tyre impression could be an important part of the evidence (e.g. in what direction the suspect was walking)
	 This information could be captured by a GPS-sensor and compass sensor (both available as Smartphone Apps)
	Location registration by GPS-signal
	Orientation registration by Compass sensor (e.g. Compass App for Smartphone)
Priority	Conditional
Comment	- To analyze the location and orientation of a scanned footwear or tyre impressions special guidance or sensors have to be integrated in the scanner
Specification	- Numbering of scans in one scan session (one crime scene), so that the location of each scan is known specifically
	- Compass sensor (compact hall sensor) gets tested and integrated in the 3D-sensor, so that the orientation relative to the north (or south) vector can be calculated
Output following review for DV	Not implemented
DV content (Y/N), reason if relevant	N, conditional
DV ReqID	n/a

ReqID	HW 36
Short name	User manual
Description	- Training and look up material
Priority	Conditional
Comment	-
Specification	 Short instructions on leaflet in English and German Long user manual in English and German
Output following review for DV	No update
DV content (Y/N), reason if relevant	Ν
DV ReqID	n/a

ReqID	HW 37
Short name	Usable data download
Description	The download of scan data should be user friendly and safe.
Priority	Conditional
Comment	-
Specification	 Encrypted download Selection of scan projects to download Progress bar Control of space on memory stick Robustness in case of abort (e.g. through empty batteries)
Output following review for DV	No update
DV content (Y/N), reason if relevant	Ν
DV ReqID	n/a

ReqID	HW 38
Short name	Set up for demonstrations and trainings
Description	Transportable setup and material for system demonstration during workshops,

	exhibitions or user trainings.
Priority	Optional
Comment	-
Specification	- Mobile setup and demonstration objects
Output following review for DV	No update
DV content (Y/N), reason if relevant	Ν
DV ReqID	n/a

3D analysis software requirements/specifications list

ReqID	SW 1
Short name	Usability
Description	 The software design and development will focus on footwear and tyre impressions for "High Volume Crimes". The high volume crime scenarios require well predefined and easy to use workflow with few clear steps in an intuitive and simplified interface. The workflow will be suggested to the user through a simplified interface that will guide the user in the following steps: Data input (Data stitching/alignment - if necessary) (High resolution image overlapping - if acquired) Support to <i>Class characteristics</i> identification Output result (printing, data viewing, data web sharing, data export in other software for further analysis)
Priority	Essential
Comment	n/a
Specification	 Dedicated workflow Raw data import (scan and images) Alignment of multiple scan related to the same impression (print) Class characteristics identification Individual characteristics identification Characteristics archived per print Search for "similar print" per project or within projects Print comparison Final report supported by measuring tools and exporting functions
Output following review for DV	Requirement is updated to not focus on "High Volume Crimes" but also "Serious Crimes" i.e. all crime scenes. Specification is not updated, but it is emphasised that the workflow is flexible and must not be seen as a series of steps, regarding analysis. This specification includes enabling: • Checking image quality to see if it is sufficient for a meaningful and reliable analysis ⁸⁹
DV content (Y/N), reason if relevant	Y, indirectly for importing, alignment, meshing and measuring Software design implements requirement/specification
DV ReqID	[3.1]-[3.3], [4.1]-[4.6], [5.1]- [5.2], [6.1]-[6.2] (see below)

⁸⁹ Supra: FSR, Forensic Image Comparison p.10.

Use, duplication or disclosure of data contained on this sheet is subject to the restrictions on the front sheet of this document.

ReqID	SW 2
Short name	Necessary Know-How for usage
Description	The software GUI and processes steps will be designed so that analysis of measurements can be done by a person qualified to be a crime scene investigator. <i>Update 2019: "crime scene investigator" in above sentence should be replaced by "identification expert</i> ".
Priority	Conditional
Comment	n/a
Specification	Software workflow mimics the common operational methodology used by experts for identifying the presence of characteristics such as cuts, scratches, tears and holes in physical impressions, but the process is completely software based using electronically scanned data.
Output following review for DV	 This specification includes enabling: Checking image quality to see if it is sufficient for a meaningful and reliable analysis⁹⁰
DV content (Y/N), reason if relevant	N, connected with end user and their know-how Software design implements requirement/specification Partly tested during round-robin tests.
DV ReqID	2/2
	n/a
ReqID	n/a SW 3
-	
ReqID	SW 3
ReqID Short name	 SW 3 Software platform performance The software will be designed on a platform capable to handle large point cloud data sets. The points will be imported directly from the sensor and converted in a level of detail structured for fast navigation also when large data sets are displayed The software platform is scalable to be used with short range/highly accurate sensors and long range/middle accuracy sensors. Workflows and processing tools will be designed to provide results in short time after
ReqID Short name Description	 SW 3 Software platform performance The software will be designed on a platform capable to handle large point cloud data sets. The points will be imported directly from the sensor and converted in a level of detail structured for fast navigation also when large data sets are displayed The software platform is scalable to be used with short range/highly accurate sensors and long range/middle accuracy sensors. Workflows and processing tools will be designed to provide results in short time after raw data import from the sensor
ReqID Short name Description Priority	 SW 3 Software platform performance The software will be designed on a platform capable to handle large point cloud data sets. The points will be imported directly from the sensor and converted in a level of detail structured for fast navigation also when large data sets are displayed The software platform is scalable to be used with short range/highly accurate sensors and long range/middle accuracy sensors. Workflows and processing tools will be designed to provide results in short time after raw data import from the sensor

⁹⁰ Op.cit.

Use, duplication or disclosure of data contained on this sheet is subject to the restrictions on the front sheet of this document.

DV content (Y/N), reason if relevant	Software design implements requirement/specification.
DV ReqID	n/a

ReqID	SW 4	
Short name	Resources	
Description	The software platform (including processing algorithm) will run on a "good" PC work station or on a high-performance laptop, all easily commercially available.	
Priority	Essential	
Comment	n/a	
Specification	The following characteristic will be required	
	 OS: Windows XP SP2 Windows Vista Windows 7 Windows 8 Graphics card: NVIDIA GeForce FX and onwards PC recommended features: Multi-core processor At least 4GB RAM NVIDIA GeForce 500 with at least 512MB 64 bit version 	
Output	MINIMAL SOFTWARE REQUIREMENTS	
following review for	Processor: 64 bit single core.	
DV	Main memory: 4 GB	
	Graphics card that supports OpenGL 3.3.	
	Windows 7 service pack 1.	
	Mouse with two buttons plus a clickable scroll wheel.	
	These requirements are the bare minimum to use 3D Forensic software, the software performance will be very limited.	
	RECOMMENDED SOFTWARE REQUIREMENTS	
	Processor: Intel Core i7/Xeon, 4 or 8 physical cores	
	Main memory: 16 GB	
	Graphics card that supports OpenGL 4.0 or higher, 4 GB dedicated GPU memory.	
	Windows 10	
	Mouse with two buttons plus a clickable scroll wheel.	
	Screen resolution: 1920x1080 or higher.	
DV content	Y, indirectly tested with DV tests for the data analysis software	
(Y/N), reason if relevant	Platform requirements stated with software	
DV ReqID	[3.1]-[3.2], [4.1]-[4.6], [5.1]- [5.2]	

ReqID	SW 5		
Short name	Input formats - Points		
Description	 Software will accept point clouds directly from the forensic sensor (with quality value for each point (0-255) and calibrated image from one camera) The software will also accept as inputs 3D points from different range sensor or from photogrammetric data sources. 		
Priority	Essential		
Comment	n/a		
Specification	 Point cloud input from the 3D Forensic sensor Scan and 3D point formats input from different range sensors or from calibrated cameras data sources: 		
	Optech ixf scan VIC pst point cloud LAS point cloud MDL point cloud PTS point cloud ZF laser scan FARO laser scan PTX point cloud PLY point cloud	*.ixf *.pst *.las *.laz *.txt *.pts *.zfs *.fls; *.iQscan *.ptx *.ply	
Output following review for DV	No update		
DV content (Y/N), reason if relevant	N		
DV ReqID	n/a		

ReqID	SW 6	
Short name	Input formats- Meshes	
Description	Data inputs of "references models": point cloud or meshes of footwear and tyre impressions created with external modelling software or directly from scanning systems.	
	The reference mesh model will be one for the input during the point to mesh comparison to verify compatibility between print and reference object.	
	The following mesh format will be supported:	
	- Stanford Triangle Format (Ply)	
	- Autodesk DXF format	
	- 3D Studio model format (3ds)	

	- STL binary and ascii format	
	- Alias Wavefront OBJ format	
Priority	Essential	
Comment	n/a	
Specification	Following mesh formats are support	ed:
	Stanford Triangle Format Autodesk DXF format 3D Studio model format Reconstructor triangle meshes STL ASCII format STL binary format OpenSceneGraph Archive format OpenSceneGraph extendable binary OpenSceneGraph extendable format Psuedo OpenSceneGraph file loaded Alias Wavefront OBJ format OpenSceneGraph Ascii file format OpenSceneGraph extendable ascii fo OpenSceneGraph extendable ascii fo	-
Output following review for DV	No update	
DV content (Y/N), reason if relevant	Ν	
DV ReqID	n/a	

ReqID	SW 7
Short name	File size
Description	 The original file backup will be stored in compressed format in order to minimize size of the raw data storage. Date compression is lossless and does not affect the quality
Priority	Conditional
Comment	n/a
Specification	Both octree data set and raw gridded files are saved and archived in data formats that internally uses compression capabilities preserving fast data access
Output following review for DV	No update
DV content (Y/N), reason if relevant	N Software design implements requirement/specification.
DV ReqID	n/a

ReqID	SW 8
Short name	Safe Storage of the original scans
Description	- The original scans and RGB photographs will be stored in a way that nobody can change these scans. A working, editable copy must be derived from the original scan to make selections and identification.
Priority	Essential
Comment	
Specification	 The project structure in the software preserve the raw data (3D points and images with calibration parameters) The internal format for 3D points avoids points lost in case of user editing The images are stored in standard formats (jpg, png, bmp)
Output following review for DV	No update
DV content (Y/N), reason if relevant	N Software design implements requirement/specification.
DV ReqID	n/a

ReqID	SW 9		
Short name	Data export - Point and Mesh		
Description	- The acquired dataset will be exportable (compatible) to regular 3D formats both as point cloud (txt,, pts, ptx, las, E57) and meshes (VRML, Obj, STL, Ply, Ascii, AOP, E57) This is necessary to perform different actions, combine complete 3D crime scenes, etc with other programs like Maya, 3DMax, Autocad, Cyclone, PointForce, Geomagic.		
Priority	Conditional		
Comment	n/a		
Specification	The acquired scanner data (3D points) can be exported in the following standard formats: Point cloud export formats E57 point cloud (x y z r[0-255]) *.btt VIC pst point cloud *.e57 Text point cloud *.las LAS point cloud *.las LAS zipped point cloud *.laz Solid image export formats Reconstructor 2 grid point cloud *.rgp E57 point cloud *.e57 PTX point cloud *.e57 PTX point cloud *.et The imported mesh model are in and out in the following standard formats Stanford Triangle Format *.ply Autodesk DXF format *.daf 3D Studio model format *.sta STL binary format *.sta STL binary format *.sta OpenSceneGraph extendable binary *.osgb OpenSceneGraph extendable format *.osg2 Psuedo OpenSceneGraph Active format *.osg OpenSceneGraph extendable format *.osg The images are stored, used and exported in standard formats: jpg, png, bmp		
Output following review for DV	The listed formats are compatible, within many others i.e. the following software used worldwide: Rhino, Maya, 3D Studio Max, Autocad, Cyclone, Geomagic No update		

DV content (Y/N), reason if relevant	N, conditional, does not affect results. Software design implements requirement/specification.	
DV ReqID	n/a	

ReqID	SW 10	
Short name	3D and 2D Navigation tools	
Description	- Together simplified GUI the point/meshed navigation tool both for 3D and 2D data display will be designed to be intuitive and user friendly.	
Priority	Conditional	
Comment	n/a	
Specification	The software supports both 3D point view and 2D (scan grid and images) display	
	3D view 2D view	
Output following review for DV	Determination of further detail requirements/specifications SW10.1-10.2, the DV requirements [3.1]-[3.2] (<i>provided directly below</i>)	
DV content (Y/N), reason if relevant	Y, DV indirectly Software design implements requirement/specification.	
DV ReqID	[3.1]-[3.2], [4.1]-[4.6], [5.1]-[5.2]	

DV ReqID	Name - description	Specification
[3.1]	Resolution - ability to resolve specific geometric features in a point cloud	≤ resolution of 3D point cloud
[3.2]	Specificity 3D, - geometric features, which are present in the 3D point cloud, are emphasized	No artificial features are created

ReqID	SW 11	
Short name	Point to point alignment (stitching)	
Description	Multiple 3D-scans of objects that did not match in one measurement, e.g. tyre impression, have to be stitched into one 3D-point cloud. The registration of several point clouds will be made in a semi-automatic way, with a two steps procedure i) Put the two dataset closer and ii) Automatically fit the two models in a single reference system for the next comparison	
	steps Moreover a scan comparison between reference dataset and the measured one requires this easy to use alignment tool	
Priority	Essential	
Comment	n/a	
Specification	 The alignment functions works in two steps: 1) a first tool to put an impression close to another, moving one scan into the rough position of the reference scan 2) a second tool for a cloud to cloud best fitting that minimize the alignment errors In the first step external reference points can be used. The 2 steps can be performed between two scans acquired with the 3D Forensic scanner but also with other scanning systems. 	
Output following review for DV	Determination of further detail requirements/specifications SW11.1-11.6, the DV requirements [4.1]-[4.6] (<i>provided directly below</i>)	
DV content (Y/N), reason if relevant	Y	
DV ReqID	[4.1]-[4.6]	

DV ReqID	Name - description	Specification
[4.1]	Accuracy - alignment of point clouds results in no visible transition border.	< accuracy of 3D-Scanner
[4.2]	Robustness - resistance to small variations in method parameters and environmental conditions (e.g. manual pre-alignment).	Small variations without influence
[4.3]	Repeatability (accuracy) - alignment should be stable. (Measurement uncertainty / standard deviation of accuracy)	< 50 µm
[4.4]	Reproducibility (accuracy) - alignment	< 50 µm

	should be independent from user. (Measurement uncertainty / standard deviation of accuracy)	
[4.5]	Range - point clouds require low overlapping area.	30-50%
[4.6]	Quality control - resulting deviation of the alignment is logged. / Error resistance	Output the alignment error
ReqID	SW 12	
Short name	3D Model comparison	
Description	<text></text>	
Priority	Essential	
Comment	n/a	
Specification	- Function to set one impression close to - Function to display 2 scans in 2 parallel	pressions coming from different crime scenes another for a comparison (SW 11) windows for visual comparisons supported by ole in the scan or in overlapped images (SW
Output following review for DV	At the moment there is only a visual comp Feedback from users has indicated that the Requirement reassessed as "optional". Determination of further detail requirement requirements [5.1]-[5.2] (provided direct	his is acceptable.

DV content (Y/N), reason if relevant	Y, regarding generation of mesh model Software design implements requirement/specification.
DV ReqID	[5.1].[5.2]

DV ReqID	Name - description	Specification
[5.1]	Accuracy - meshing of point clouds does not change the measurement data. (Deviation between mesh and point cloud is small)	< 1/10 of accuracy of 3D-Scanner
[5.2]	Specificity - only geometric features, which are present in the 3D point cloud, are also visible in the mesh.	No artificial features are created

ReqID	SW 13	
Short name	Camera projection - Fit of external images (HighRes RGB photograph)	
Description	- The overlapping of a high-resolution RGB camera image over the 3D-point cloud would be a great help in considering the texture and distortions from a footwear or tyre impression	
	- A software module will be developed to re-project calibrated images onto the 3D model of the scene using the intrinsic (internal calibration parameters) and orientation of the camera. The images from the camera inside the forensic sensor will be automatically positioned onto the related geometry. The images overlapped to points or meshes provide important complementary information to support measured extraction.	
	- In case of traces with undetectable depth geometry, the image projection becomes fundamental to retrieve planar measure (distances, areas). If the system is provided with an external (high resolution) pre-calibrated camera connected to the scanner with a special mounting system, the software will use acquired images as described for the internal ones.	
	- This capability will add high resolution colour information to the 3D model.	
Priority	Essential	
Comment	n/a	
Specification	The importing function supports automatic 3D scan input with one or more images.	
	The external camera is calibrated (inner and outer parameters) according to the scanner head; the calibration parameters are directly readable by the software.	
	The calibrated image can be overlaid in real time on the 3D point cloud.	
Output following	Determination of further detail requirements/specifications SW13.1, the DV requirements [3.3] (<i>provided directly below</i>)	
review for DV	Calibration dependent on calibration data provided with 3D-Scanner	
DV content (Y/N), reason if relevant	Y (with 3D-Scanner)	

DV ReqID	[2.1] [2.5]
DV ReqID	[Z.1][Z.3]

	SW 44	
ReqID	SW 14	
Short name	Class characteristics: data input from database manufacturers	
Description	 For the class characteristics (profile elements and size) step, a guided procedure will help the user to import shoes or tyre models from external manufacturers' databases and to compare them with the survey. Manufacturers' 3D models and 2D print will be importable as mesh model or 2D pictures respectively and usable with the comparison tools. 	
Priority	Conditional	
Comment	n/a	
Specification	 A tool allows: to import 2D images coming from external manufacturers databases or dedicated forensic archives to scale and position the 2D image according to the 3D footprint If 3D mesh models of the reference tires or shoe is available, it can be imported in standards mesh formats (SW 9). 	
Output following review for DV	No update	
DV content (Y/N), reason if relevant	N, not directly affecting result Software design implements requirement/specification.	
DV ReqID	n/a	

ReqID	SW 15	
Short name	Class characteristics: comparison tools	
Description	- Imported manufacturer' 3D models after point to point alignment (stitching), will be compared with scanned prints and provide a compatible numerical report.	
	- For 2D print comparison, an easy-to-use manual procedure will allow to overlap a 2D projection of the scanned print (with photo if available) with the 2D manufacture and to visually point out discrepancy and similarities. This procedure will be applicable if manufacturer's prints will be provided with the corrected scale (show size, tire corrected size)	
	- Additional manual drawing tools will be provided to support class characteristics for diverse profiles (blocks/lines/waves/etc).	
Priority	Conditional	
Comment	n/a	
Specification	A tool allows overlapping the imported and scaled 2D images over the scans and helps the expert to verify compatibility with the reference manufacturer's characteristics. When size and type are identified, these class characteristics are archived in the project as	

	specific annotations for the analysed print.
	In case of 3D meshes form a 3D reference manufacturer model, the pre-alignment tool can be used to set the 3D meshes in the same reference system of the scanned print (SW 11). The 3D model comparison tool (SW 12) supports the user to visually compare the reference model with the scanned model.
Output	No update
following review for DV	(Note: with reference to the requirement numerical reports are created by users if their Criminal Justice system approves this evidential approach. There are no automatic tools for numerical analysis, except the distance, area etc. measurement tool.)
DV content	N, not directly affecting result
(Y/N), reason if relevant	Software design implements requirement/specification.
DV ReqID	n/a

ReqID	SW 16	
Short name	Tool to support identification	
Description	- For the identification process (individual classification) steps drawing and measurement tools will be provided to point out deviations, damages, etc. of the class characteristics and support the user to determine the individual characteristics	
Priority	Essential	
Comment	n/a	
Specification	A drawing tool allows the user to underlay visible deviations or damages (cuts, scratches, tears and holes etc). The drawing tool works using the 2D scan view but having the 3D coordinates as background information. In this way all the extracted lines or segments are measurable in 3D (3D length) and can be archived in the project as specific annotation for the analysed impression. Drawing tool is supported by overlapping different colour layers (external images, inclination, distance map) that help the user to visually emphasize deviations or damages.	
Output following review for DV	No update	
DV content (Y/N), reason if relevant	N, not directly affecting result	
ii i cicvaiit	Software design implements requirement/specification.	

DV ReqID	n/a
ReqID	SW 17
Short name	Annotation tool and drawing
Description	 During the field campaign and the following data analysis, the measured evidence needs a dedicate tool to insert annotation as well as ancillary data (photos, videos, etc). With the dedicated annotation tool all the collected evidence will be organized and spatially located having a common reference geometrical model. An additional easy to use drawing tool will be provided to support class characteristics comparisons and individual characteristics identification
Priority	Essential
Comment	n/a
Specification	 During the field campaign each impression (from a single or multiple scans) is identified with a unique ID; this ID is preserved during the importing phases All the drawings (SW 16) are archived as specific annotations linked to the referenced scan Customizable (with an external *.csv file) annotation tool with rapid short cuts allows the user to insert annotation picking points in 3D.
Output following review for DV	Update regarding insertion of ancillary data (photos, videos, etc) – it is possible at the moment is to insert an annotation point and Hyperlink to external file (imaged, docs, videos)
DV content (Y/N), reason if relevant	N, not directly affecting result Software design implements requirement/specification.
DV ReqID	n/a

ReqID	SW 18
Short name	Measuring tool
Description	The operator will have dedicated measuring tools to selected points and mesh key points and extract the relevant print measured (length, size, area, depth). The measuring tool will be a fundamental basic tool to provide a numerical report during the analysis step.

	Image: State State State Image: State
Priority	Essential
Comment	n/a
Specification	 Tool to measure the linear distances between points Tool to measure the lentgh of drawing (SW 16) Tool to measure local areas
Output following review for DV	Determination of further detail requirements/specifications SW18.1-18.2, the DV requirements [6.1]-[6.2] (<i>provided directly below</i>) Calibration dependent on calibration data provided with 3D-Scanner
DV content (Y/N), reason if relevant	Y
DV ReqID	[6.1]-[6.2]

DV ReqID	Name - description	Specification
[6.1]	Measurement accuracy and repeatability of the software itself - extract correct measure given the same starting and ending point	≈ 0 µm measure error
[6.2]	Measurement accuracy and reproducibility	< 1 mm

ReqID	SW 19
Short name	Printing images / scans / reports
Description	The software will have printing capabilities for images, files and reports.
Priority	Conditional

Comment	n/a
Specification	- Screen shot from the visualized models exportable as standard image
	 Ortho-graphic views exportable as scaled measurable 2D images compatible with CAD or image processing software for scaled prints
	- 2.5D measurable images (Solid images) exportable in CAD with a dedicated plug in
	- Annotation exportable as standard *.csv
	- 3D scene video recording according to user defined trajectories exportable in *.avi format
Output following review for DV	No update
DV content	N, not directly affecting result, conditional
(Y/N), reason if relevant	Software design implements requirement/specification.
DV ReqID	n/a

ReqID	SW 20
Short name	Scans web sharing
Description	The software platform is designed to display point clouds stored on a local PC or stored on a web server. The web sharing capability will offer to the forensic operators (experts, lawyers, magistrates etc) the possibility to show and evaluate the results of forensic activity from different locations accessing the same data set.
Priority	Optional
Comment	n/a
Specification	After authentication on a dedicated web page a user can upload a 3D cloud on a web protected server. The user can publish only the desired 3D point cloud with other user controlling the accessing time and closing the connection if necessary.
Output following review for DV	At the moment this sharing functionality is not directly offered to the user in the last version of the software. The web-sharing infrastructure is strongly dependent from internal web infrastructure of the forensic police. The RIS Carabinieri works on PCs that are not web connected at all. Requirement/Specification was optional.
DV content (Y/N), reason if relevant	N, not directly affecting result, optional
DV ReqID	n/a

ReqID	SW 21
Short name	Error resistance
Description	The software will be designed and tested to be resistant against failure by user with some

	recoverable, functionalised and back up tools.
Priority	Conditional
Comment	n/a
Specification	The dedicated workflow (SW1) helps the user to avoid procedural errors
	If a crash occurred all the data, raw and processed are saved in the project structure to prevent data lost
Output following review for DV	No update
DV content (Y/N), reason if relevant	No
DV ReqID	n/a

ReqID	SW 22
Short name	Accuracy
Description	The user will have a report concerning the accuracy during the comparison steps and the preparing processing steps.
Priority	Conditional
Comment	n/a
Specification	During the alignment process and measuring process the user can display accuracy parameters in terms of alignment errors and pixel resolution when drawing or measures are extracted
Output following review for DV	This specification includes: • "Authentication" - "the data is an accurate presentation of what it purports to be." ⁹¹
DV content (Y/N), reason if relevant	Y, regarding alignment and measuring
DV ReqID	[4.1]-[4.6] and [6.1-6.2] (<i>described above</i>)

⁹¹ Supra: Home Office, *Digital Imaging Procedures* p.77.

Use, duplication or disclosure of data contained on this sheet is subject to the restrictions on the front sheet of this document.

Ensuring admissibility in court as evidence requirements / specifications list

ReqID	CC 1
Short name	Transparency
Description	The complete sequence: from scanning until identification must be transparent and reproducible. The system will be able to output any intermediate data that was produced in the analysis. It must be possible to give the original data to an independent third person for contra-expertise.
Priority	Essential
Comment	n/a
Specification	 Detailed documentation of all functionalities in the scanning and analysing process Possibility to output every intermediate data in the analysis process Workflow in the 3D-analysis will be guided by the software to achieve reproducible results
Output following review for DV	 This specification includes: Integrity - "the data (image etc.) presented is complete and unaltered since time of acquisition." (p.7) (e.g. Secure copy, master/working copy, audit trail)⁹² "Authentication" - "the data is an accurate presentation of what it purports to be."⁹³
DV content (Y/N), reason if relevant	Y, reproducibility
DV ReqID	[1.5]A, [1.5]B, [2.4], [4.4], [6.2] (described above)

ReqID	CC 2
Short name	Accreditation/Validation anticipation
Description	The following international standards have been identified: ISO17025 for laboratory work, and ISO17020 for crime scene work. In addition it is noted that CEN activities started in 2013 to develop a CEN crime scene standard. National countries can also have their own codes of practice and conduct for forensic service providers and practitioners supporting standards. Analysis within the partner countries to date identifies that compliance with standards and/or codes is not a precondition for acceptance in court, though it may certainly help to facilitate acceptance in court. Accreditation and validation can however be a requirement requested by police forces for the provision of forensic services and/or equipment and/or prosecution authorities. However, for example, PZ states that it can and will use the 3D-Forensics system to prepare evidence for court without accreditation/validation if it is satisfied with its performance. (<i>Text relevant to earlier FP7 project deleted</i>)

92 Supra: Home Office, Digital Imaging Procedures p.7

⁹³ Ibid. p.77.

Use, duplication or disclosure of data contained on this sheet is subject to the restrictions on the front sheet of this document.

Priority	Conditional
Comment	n/a
Specification	 The usage of the system does not constrain an accreditation The project activities, specifically in WP7 "Forensic Test and Scientific Evaluation", will prepare the way towards potential future accreditation / validation processes Note 2019: Specification specific to FP7 project, present FTI project has present WP4 activities connected with pushing validation further.
Output following review for DV	No update to requirement, specification is still to push validation, both developmental validation and validation/verification by end users
DV content (Y/N), reason if relevant	Y, DV supports validation.
DV ReqID	ALL

ReqID	CC 3	
Short name	Uniqueness of the trace	
Description	Each trace must bear a unique code to track: the time, location, number of traces and person that recovered the traces	
Priority	Essential	
Comment	n/a	
Specification	 Additional time stamp is saved for each scan as part of the file- or directory-name Additional information, such as number of traces, name of the crime scene and system user, can be added to each scan or scan session (all 3D-scans at one crime scene) by the user 	
Output following review for DV	 This specification includes: "Authentication" - "the data is an accurate presentation of what it purports to be."⁹⁴ 	
DV content (Y/N), reason if relevant	N, 3D-Scanner and 3D analysis software design implements requirement/specification.	
DV ReqID	n/a	

ReqID	CC 4		
Short name	Simplicity and output easy to understand		
Description The output should be understandable for a layman. The people who have to understand the procedure and the techniques are often non-technical			

⁹⁴Op.cit.

Use, duplication or disclosure of data contained on this sheet is subject to the restrictions on the front sheet of this document.

	(judges/lawyers/jury). The results will be reported by the software in a format that will be comprehensible.	
Priority	Essential	
Comment	n/a	
Specification	 Detailed documentation of all functionalities in the scanning and analysing process Detailed documentation of the final analysis results in the software 	
Output following review for DV	No update	
DV content (Y/N), reason if relevant	N, connected with laymen and their know-how 3D analysis software design implements requirement/specification, tools provided for reporting, user responsible for providing understandable content.	
DV ReqID	n/a	

ReqID	CC 5		
Short name	Safe storage of the original scans.		
Description	The original scans and RGB photographs should be stored in a way that nobody can change/manipulate these scans. A working, editable copy must be derived from the original scan to make selections and identifications.		
	After data collection all measured datasets are moved from the 3D-scanner to an USB stick in a protected encrypted archive. The encrypted data archive (e.g. ZIP-file) is transported on the USB-stick to the analysis PC in the office, while the password is transported on a separate device. The analysis software PC in the police office is under supervision of the police network. During the importing phase the analysis software PC requires that the data on the USB stick gets decrypted.		
	The measurement data is consistent with the raw data. A local copy of the raw data is automatically made during the importing phase to the office PC, providing for safe storage on the police office PCs. Data integrity is guaranteed during the processing phase: the user has the possibility to start or re-start the processing and analysis from the raw data.		
Priority	Essential		
Comment	n/a		
Specification	- The original measurement data consists of the 3D point cloud and the colour map		
	- Directly when scanning, the data is stored encrypted on the PC, that is integrated in the 3D-scanner		
	- When analysing (and editing) the data, the original files are stored write-protected, the user works with an editable copy		

700829 — 3D-Forensics/FTI — H2020-FTIPilot-2015-1 SECURITY: CO 3D-Forensics/FTI Developmental Validation

Output following review for DV	 This specification includes: Integrity - "the data (image etc.) presented is complete and unaltered since time of acquisition." (p.7) (e.g. Secure copy, master/working copy, audit trail)⁹⁵
DV content (Y/N), reason if relevant	N 3D-Scanner and 3D Software design implements requirement/specification
DV ReqID	n/a

ReqID	CC 6	
Short name	Prevent data manipulation	
Description	The data structure and project structure will be in the logic to prevent data manipulation during the chain of custody. For example the final results can be delivered in a project structure that becomes unreadable if some component of the dataset is modified.	
Priority	Essential	
Comment	n/a	
Specification	- Directly when scanning, the data is stored encrypted on the PC, that is integrated in the 3D-scanner	
	- The analysis of the data will be made on a PC in the police office, which is secured by the system of the police	
	- The original scan data cannot be manipulated by anyone (only system administrator)	
	- The working copy can only be edited by authorized users	
	- The project structure will enable that each intermediate step in the analysis can be undone to prevent unwanted data manipulations	
Output	This specification includes:	
following review for DV	 Integrity - "the data (image etc.) presented is complete and unaltered since time of acquisition." (p.7) (e.g. Secure copy, master/working copy, audit trail)⁹⁶ 	
DV content (Y/N), reason if relevant	N 3D-Scanner and 3D Software design implements requirement/specification	
DV ReqID	n/a	

⁹⁵ Supra: Home Office, *Digital Imaging Procedures* p.7.

⁹⁶ Op.cit.

Use, duplication or disclosure of data contained on this sheet is subject to the restrictions on the front sheet of this document.

Annex 2: 3D-Forensics system's product specifications (June 2019)

The following tables provide the 3D-Forensics system's "high-level" product specifications (June 2019) with full consideration of the "developmental validation" results. "High level" means they do not go into all the detail as included in Annex 1. However the fuller specifications connected with the "developmental validation" will be available for user review.

3D-Scanner

3D-Scanner specifications	
Field of view	325 x 200 mm ² (single field)
Measurement height	100 mm
Working distance	455 mm
Resolution	Lateral: 0.17 mm (point pitch distance) / Vertical: 0.04 mm
Accuracy	< 0.05 mm
Weight	3.7 kg (without camera, without battery)0.8 kg (battery)0.6 kg (200D <i>camera</i>) or 1.1 kg (Mark IV <i>camera</i>)
Size	350 x 240 x 260 mm ³ (without external camera)
Sound intensity	< 30 dB
Battery time	 > 2 h (recording ca. 1 scan per minute) < 4 h (running device, without recording) ca. 2 h (recharging)
Time to scan	<200 ms
Processing time	4 - 6 secs
Colour camera	Canon EOS 100D/200D or Canon 5D Mark IV
Brightness settings	7 exposure steps, 7 LED brightness settings
Temperature	-10°C 40°C
External light	< 40,000 lux
Start-up time	35 sec
Data storage	ca. 3,000 3D scans + photo

Output format	.rgp, .txt, .ply (.E57, .las,. obj,stl, .wrml from the 3D Forensic software)	
Eye safety	\triangleq laser class 1 (no danger for eyes)	
IP class	IP22	

3D analysis software

3D analysis software specificatio	ns	
Import 3D Point clouds	Import 3D Forensic scans in native formats Imports point clouds from LiDAR, UAV, total station in open formats (.txt, .las, .laz, .e57, .ptx, .pts, .asc, .ply, .csv)	
Import meshes, CAD/BIM models and polylines	 Imports meshes, CAD models and polylines (.dxf, .ifc, .stl, .wrl, .vrml, .3ds, .ply, .obj, .dae) 	
Import 2D images	 Import high resolution image from 3D Forensic scanner Calibration check and recalibration function included 	
Import/merge of multiple projects	 Multiple project can be merged in one for comparison purposes 	
Export point clouds in open formats	 Export point clouds (.txt, .las, .laz, .e57, .ptx, .pts, .asc, .ply, .ptc, .ixf) 	
Export 3D mesh models in open formats	• Export 3D mesh models (.dxf, .stl, .wrl,. 3ds, .ply, obj, .dae)	
3D data visualization and navigation	 3D rendering and navigation of 3D point clouds and meshes 	
Point Cloud Filtering & Editing	 Point clouds noise removal Point clouds normal calculation Point clouds quality assessment Point clouds editing and clustering 	
3D Models registrations	 Manual registration of models Cloud to cloud ICP registration Scan registration with circular targets 	
Automatic meshing	 per scan triangulation mesh with no artefact or accuracy loss 	
Automatic mesh texturing	 3D mesh texture mapping based on calibrated images from the 3D forensic scanner 	

Camera calibration	 Internal and external camera calibration (perspective, ortho and spherical cameras) using 3D points from point clouds or meshes: chessboard internal calibration included. 	
Analysis tool: dedicated tool to analyse class and specific characteristics and do comparisons	 Class characteristic visual identification comparing 3D scan with 2D shoes images (from external data set); scaling and measuring tools included Specific characteristic visual identification thanks to measuring, profile and annotation tools; per impression characteristics are save in an internal DB Comparison between impressions or with suspect shoes thanks to overlapping tool with transparency settings 	
3D distances (with components in UCS) between points and planes		
Angle measure	Calculate angles between points and planes	
Area calculation	Calculate area under a point cloud or a mesh	
Segment and polylines	Manual extraction of 3D segment and polylines from picked points	
Orthophotos from point cloudsInteractive tool to create orthophotos given a point clouds or a meshes		
Orthophotos viewer	Interactive tool visualize orthophotos and extract measures	
Video recording	Generate and export fly-through video in standard formats	
Save high resolution snap Extract high resolution images for user defined view models		

Annex 3: Development validation test specimens

Overview specimens used to test specifications and related test references

An overview of the specimens used to test specifications and related test references are described in the following tables. In Annex 4 test scenarios connected with the test references are described in detail and the full and final results of the developmental validation are given. Under terms of "Reproducibility", the full and final results of the round robin tests are given.

	Specimen	Tested specifications	Test references
1)	3D resolution	Tool 1: Resolution	3DFFTI_TC_1a
specin	specimen	Tool 1: Repeatability of resolution	3DFFTI_TC_1a
		Tool 1: Reproducibility of resolution	3DFFTI_TC_1b
		Tool 1: Robustness of resolution	3DFFTI_TC_1c/d
		Tool 1: Thermal robustness of resolution	3DFFTI_TC_1e
		Tool 1: Surrounded sunlight	3DFFTI_TC_1f
		Tool 1: Handheld scan mode	3DFFTI_TC_1aH 3DFFTI_TC_1bH
2)	Sphere normal	Tool 1: Range of inclination angle	3DFFTI_TC_2
3)	Calibration board	Tool 1: Accuracy	3DFFTI_TC_3a
		Tool 1: Repeatability of accuracy	3DFFTI_TC_3a
		Tool 1: Reproducibility of accuracy	3DFFTI_TC_3b
		Tool 1: Robustness of accuracy	3DFFTI_TC_3c
		Tool 1: Thermal robustness of accuracy	3DFFTI_TC_3d
		Tool 1: Surrounded sunlight	3DFFTI_TC_3e
		Tool 1: Handheld scan mode	3DFFTI_TC_3aH 3DFFTI_TC_3bH
		Tool 2: Accuracy	3DFFTI_TC_3a
		Tool 2: Repeatability of accuracy	3DFFTI_TC_3b
		Tool 2: Reproducibility of accuracy	3DFFTI_TC_3c
		Tool 2: Thermal robustness of accuracy	3DFFTI_TC_3d
		Tool 2: Handheld scan mode	3DFFTI_TC_3aH 3DFFTI_TC_3bH
		Tool 2: Surrounded sunlight	3DFFTI_TC_3e

4)	Sphere distance	Tool 1: Accuracy	3DFFTI_TC_4a	
	normal	Tool 1: Repeatability of accuracy	3DFFTI_TC_4a	
		Tool 1: Robustness of accuracy	3DFFTI_TC_4b	
		Tool 1: Handheld scan mode	3DFFTI_TC_4aH	
5)	Realistic objects	Tool 1: Accuracy	3DFFTI_TC_5a	
		Tool 1: Repeatability of accuracy	3DFFTI_TC_5a	
		Tool 1: Reproducibility of accuracy	3DFFTI_TC_5b	
		Tool 1: Handheld scan mode	3DFFTI_TC_5aH	
			3DFFTI_TC_5bH	

Table 19: Specimens to validate the 3D-Scanner performance

To validate the 3D analysis software, a set of specific scan datasets and simulated datasets are used as specimen:

	Specimen	Tested specifications	Test references
1)	3D point cloud	Tool 3: Resolution	3DFFTI_TC_6
	visualisation specimen	Tool 3: Specifity 3D	3DFFTI_TC_6
		Tool 3: Specifity colour	3DFFTI_TC_6
2)	Overlapping 3D scans	Tool 4: Accuracy	3DFFTI_TC_7
	specimen	Tool 4: Robustness of accuracy	3DFFTI_TC_7
		Tool 4: Repeatability of accuracy	3DFFTI_TC_7
		Tool 4: Reproducibility of accuracy	3DFFTI_TC_7
		Tool 5: Accuracy	3DFFTI_TC_8
		Tool 5: Specificity	3DFFTI_TC_8
3)	3D scans with	Tool 5: Accuracy	3DFFTI_TC_8
	different shape, depth, discontinuities	Tool 5: Specificity	3DFFTI_TC_8
4)	3D scan of calibration board	Tool 6: Accuracy	3DFFTI_TC_9

Table 20: Specimens to validate the 3D analysis software performance

3D resolution specimen

For the end users the 3D resolution is the most critical specification of the 3D-Scanner, because this specification determines the usability of the data for identification purposes. There were no specimens for the evaluation of a 3D sensor resolution available, because the resolution of 3D sensors have a wide range and the accuracy has a higher value for many applications. Thus, a self-designed specimen was used which was agreed with EETG members. The specimen contains a sequence of embossed and imprinted bars and dots, which mimic tiny shoe or tyre marks.

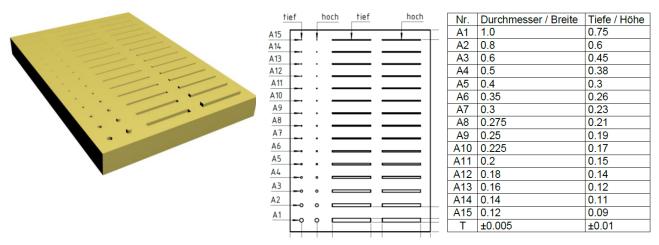
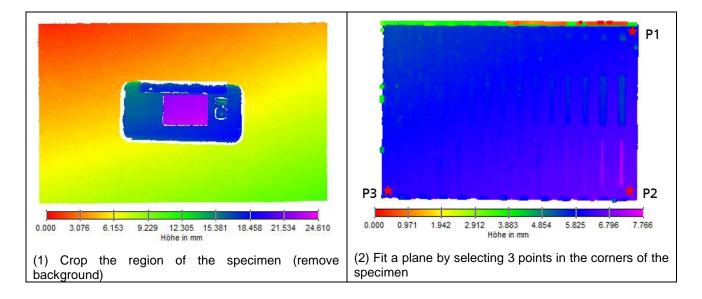


Figure 46: 3D resolution specimen layout

The achievable resolution is determined primarily by two influences: The point pitch distance in the 3D point cloud and the noise in the 3D data. While the first influence is determined by the sensor components, the second component is strongly connected with the reflection characteristics of the surface. Impression at crime scenes can occur in a wide range of underground materials. Three relevant and most difficult underground types were chosen for the resolution test. The underground types were replicated out of workable material with similar reflectance to create specimens with known geometry. The specimens were manufactured with precision milling machines by IOF. The materials represent typical undergrounds for impression traces:


- Dark matt (soil / shoe sole)
- White translucent (snow surface)
- Reflective metallic (wet surface)

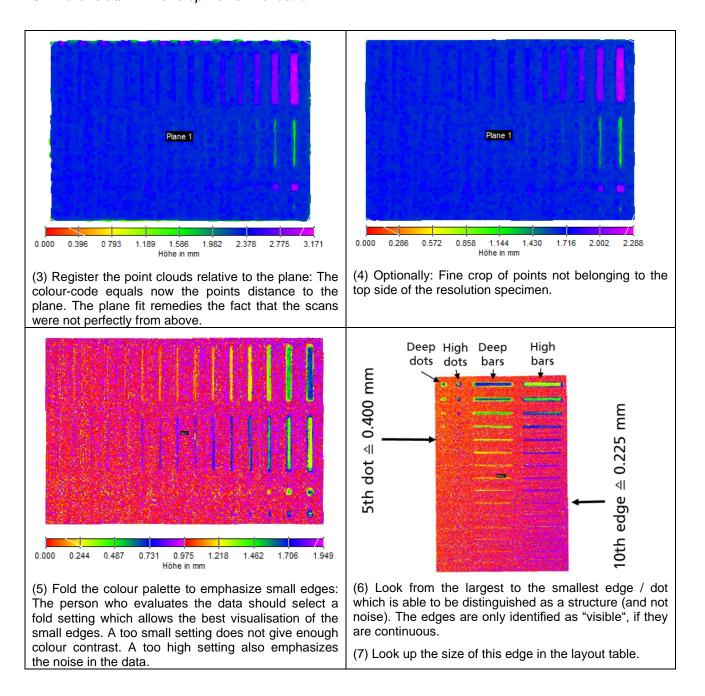

The size of the structure is between 0.12 ... 1.0 mm. The smallest structures are intentionally smaller than the nominal resolution of the 3D scanner (defined by the point pitch distance) so that the limit of the resolution can be assessed. The evaluation foresees to identify the smallest visible bar / dot size. It is not the task to measure their size.

Figure 47: 3D resolution specimens with dark matt (Rescor ceramic), white translucent (Macor ceramic) and reflective metallic (Aluminium) surface

The following guideline is applied to evaluate the resolution in a 3D scan of the specimen:

Tests on robustness of the resolution to variations of the parameters were done exclusively with the dark matt specimen. Effects of those variations would be similar for the other two specimens.

Sphere normal

The sphere normal was used to determine the maximum inclination angle. This test is typically used for industrial 3D sensors [Reference]. A single 3D scan of the sphere is acquired. It is evaluated how much of the sphere is visible (see Figure 48). Often (and also in this report) half opening angle α is taken as result. Typically for stereo camera based 3D sensors are 60...70° (α = 120...140°).

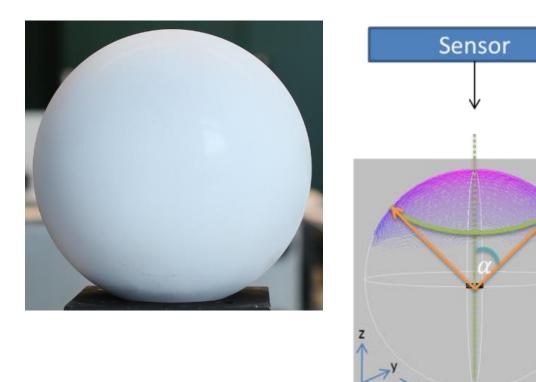


Figure 48: Sphere normal specimen (diameter 80 mm) and the evaluation of the maximum inclination angle.

Calibration board

The calibration board is a fixed component to the 3D-Scanner which is to be used for quality control by the end users. It can be used at the crime scenes to validate the accuracy of the 3D data and to recalibrate the external camera alignment. Basically it provides a pattern of 19 circles printed with high quality (50,000 dpi) on photo paper, which was then laminated on a plane glass plate. The position of each circle was calibrated in sub-micrometre precision. Compared to the other specimens it is quite robust, so that it can be taken outdoor to crime scenes.

In the validation process, the calibration board was used as specimen for the tools 1 and 2. Here it is one way to validate the accuracy of the 3D data (tool 1) and it is the only specimen to evaluate the accuracy of the external colour photo mapping (tool 2). For the evaluation of the

colour mapping accuracy no tools or specimens exist beside a visual inspection. The 3D accuracy is evaluated by comparing the distances between the circles to the reference values from the calibration certificate. The colour mapping accuracy is checked by comparing the circle positions in the point cloud and the mapped photo.

Figure 49: Scan of the calibration board and checking of the colour mapping

Sphere distance normal

The sphere distance normal is the standard specimen for industrial 3D sensor used to evaluate their accuracy. The test approach is described in the industrial guideline VDI2634. Because of its wide usage and its established status it was used in the validation, although the test of accuracy (including robustness and repeatability of accuracy) is already considered by the calibration board specimen.

The VDI guidelines propose the measurement of the sphere distance normal in 7 defined positions in the measurement volume.

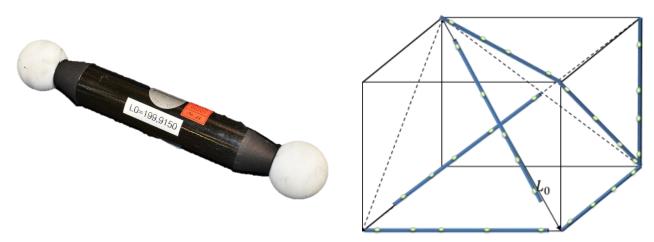


Figure 50: Example of a sphere distance normal (left) and the sketch of the 7 proposed test positions within the measurement volume (right)

Realistic objects: Shoe sole / MikroTrack[™] impression

The evaluation of the 3D-Scanner accuracy was already covered by the calibration board and the sphere distance normal. But a recommendation of the end users was that also realistic objects which are typical for the application field should be used in the validation. However some restrictions needed to be considered.

First problem is that the typical underground materials for impression traces have no long term stability (like sand or snow) and are not suitable for a specimen. With some restrictions, shoe soles and MikroTrack[™] (impressions) can be taken as specimens with stable shapes. During the test scenarios care needed to be taken that the sole / MikroTrack[™] was not deformed.

Another problem is that the real geometrical characteristics are not known (not like the calibrated distances of the calibration board or the sphere distance normal). This means that those test scenarios could not provide a feedback on the absolute accuracy of the 3D-Scanner. But through comparison of the scans between each other the reproducibility and repeatability as well as the robustness on "realistic" objects was evaluated.

To compare the scans between each other, each test scenario foresaw first the acquisition of a reference scan. Then, the point clouds of the following scans were registered to that reference

Use, duplication or disclosure of data contained on this sheet is subject to the restrictions on the front sheet of this document.

and then a "3D comparison" is performed. Hereby the distances between nearest neighbours between the test and reference point cloud were calculated. As a result of this 3D comparison a colour coded deviation map was output as well as a standard deviation between both scans.

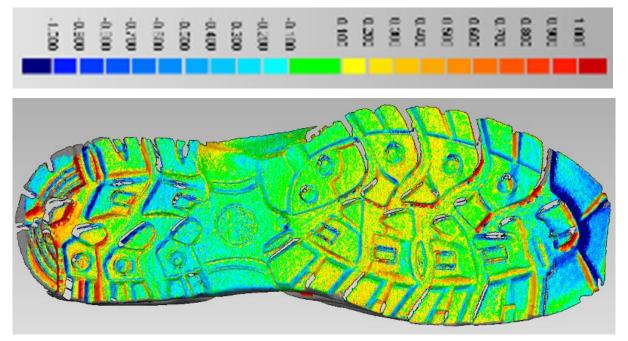


Figure 51: Example of a 3D comparison and the color coded deviation

3D point cloud visualisation specimen

To validate that the 3D analysis software emphasises only those 3D features which are encoded in the point cloud a simulated point cloud without any artefacts or noise was created. As a basis, the design of the 3D resolution specimen was used. The perfectly smooth design model was converted into a perfect point cloud. With this simulated point cloud also the capability of the software to visualise tiny features could be demonstrated.

Figure 52: Design model of the 3D resolution specimen

Overlapping 3D scans specimen

A dataset including two overlapping 3D scans of the same impression trace was used to validate the tools 4 and 5 (registration and meshing tools of the analysis software).

The registration phase is subdivided in two steps:

a) Pre-registration: the user must select two overlapping scan and select 3 homologous points

A preliminary error evaluation is provided to the user (Figure 52)

b) After the pre-registration the ICP best fitting can start

In the fine registration tool the residual error between the two point clouds after registration is captured (Figure 53).



Figure 53: Pre-registration step

3 ICP Parameters	×] [<u>30</u> I	ICP Registration		x
			- C	Drag and drop here the clouds t	to register	Result
Inliers se	arch criteria			0787 Refe	erence scan	Checking scan to be registered for compliance Checking participating reference-scans for compliance:
Min. search distance [mm]	0.010			0788 M	oving scan	OK. 1 reference scan used Preparing transformed data-set
Max. search distance [mm]	5.000					Selecting control points Building kd-tree for reference scan(s)
Number of control points	40000					Optimizing search distance Trying with distance: 0.0005 Found 27030 corresponding points
Min. control points	200					Now starting to register. Search distance is 0.0005 Performing iterative search of corresponding points, iteration=0, mean
Sufficient control points	7000					eror: 0.1350 mm Performing Iterative search of corresponding points, Iteration=1, mean error: 0.1350 mm
Max. normals divergence (°)	45.00					error: 0.1350 mm Performing iterative search of corresponding points, iteration=2, mean error: 0.0978 mm
Discard normals' verses	False ~				_	Performing iterative search of corresponding points, iteration=3, mean error: 0.0875 mm
Converge	nce Criterion				3D Registration	points, iteration=4, mean
Min. error change to continue					Mean regis	stration error: 4.4107e-5 [m] points, iteration=5, mean
Acceptable registration error[m					Apply transform	Copy in clipboard to apply later Cancel Points, iteration=7, mean
Max. iterations	200					error: 0.0723 mm
Max. Iterations	200					Performing iterative search of corresponding points iteration=9 mean Mean error [m] = 4.4107e-5 [Iteration: 72 Used points = 24095 (40000)
Cons	straints					Matching histogram
Vertical is fixed						400 T
Origin is not constrained						300 f
 Origin is known with horizon 	ntal confidence 0.001 🖨 mm			Start from preregistra	ation report	
and ver	tical confidence 0.001 🖨 mm			_ alla		100
 Origin is fixed 				Set ICP para	ameters	0 -3)
						Distance [m]
Load Save params	V Ok Cancel			Start Stop		X Close

Figure 54: a) default parameters, b) ICP best fitting

After the mesh was created from the registered point clouds (software function "Create impression") it was compared to the original point cloud to determine the accuracy. Meshes could also be compared between each other to evaluate the repeatability and reproducibility using and external tool capable to evaluate the changes (Figure 57).

Notes: The ICP best fitting converges to the noise level of the 3D data. Occasionally, in the case of higher noise levels in the scans, the first ICP iteration can converge to a "mean registration error" higher than 50 μm. In this case it is suggested to run the ICP a second time using the parameters from Figure 55.

For particular noisy scans, the mean error can be larger than 50 µm after the second ICP run. In this case the user should additionally check the scan alignment visually for correctness in the region of interest, e.g. by using the Screen Setting "Color by ID" or by displaying the two aligned scans in slice view (Figure 56). If visually the scans show no mismatch, also a larger mean error is acceptable.

Single scans can still be analyzed independently from the registration process to identify specific characteristics.

Use, duplication or disclosure of data contained on this sheet is subject to the restrictions on the front sheet of this document.

ICP Parameters	>
	arch criteria
Min. search distance [mm]	0.001
Max. search distance [mm]	1
Number of control points	40000
Min. control points	200
Sufficient control points	7000
Max. normals divergence (°)	45.00
Discard normals' verses	False \vee
Converge	nce Criterion
Min. error change to continue	(%) 0.0500
Acceptable registration error[n	nm] 0.010000
Max. iterations	200
Cons	straints
Vertical is fixed	
Origin is not constrained	
Origin is known with horizor	ntal confidence 0.001 🖨 mm
and ver	tical confidence 0.001 🖨 mm
○ Origin is fixed	
Load Save params params	V Ok X Cancel

Figure 55: Suggested parameters for the second iteration of ICP

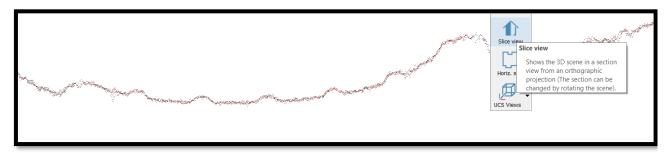
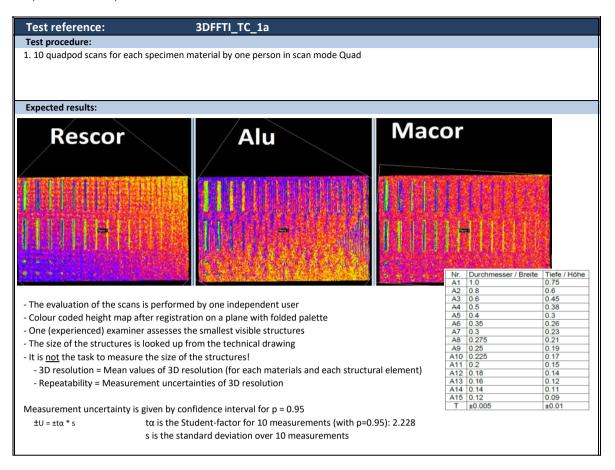


Figure 56: Slice view after ICP registration


Figure 57: Differences analysis between the final mesh model and the point cloud. All the points are coloured cyan indicating they are within the tolerance.

Annex 4: Detailed test scenarios and full and final developmental validation results

On the following pages content of the test scenarios and the full and final results are explained in detail. Each test scenario is documented on an individual test sheet.

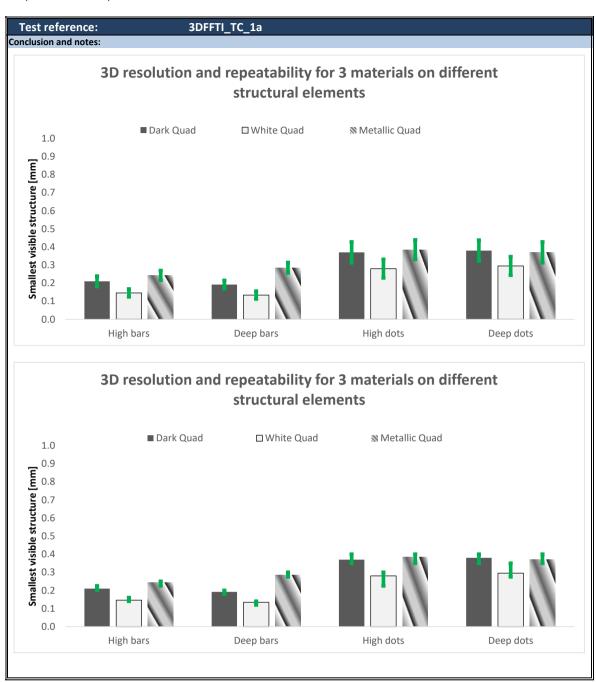
Under the specification "Reproducibility", the full and final results of the round robin tests are provided.

Test reference:	3DFFTI TC 1a				
Test name:	3D resolution and repeatability	Location:	IOF, Jena	Date:	21/02/2019
Tested requirements:	3D resolution for different undergr				
	Repeatability of 3D resolution for d			b	
Test set-up:					
- 3D resolution specimens					
- in materia	als Rescor, Macor, Aluminium				
- in scan m	ode Quad				
 grey matt material Rescor is used to det 					
 white translucent Macor is used to determine 			. ,		
 metallic shiny Aluminium is used to determine 	ermine the resolution under the limit	ation of a shiny / wet s	urface		
Test assumptions, conditions & constra • NWD - Nominal working distance = 455					
-	mm				
- FOV - Field of view (325 x 200 mm ²)					
- Specimen in center of FOV					
- Scanner in perpendicular scan orientation					
 Bars on specimen rotated vertical relation Exposure step 1 	ve to baseline of stereocameras				
- Exposure step 1 - LED brightness optimal for each specim	en material				
- LED originalises optimal for each specimi - External light <10,000 lux (indoor)	en mateildi				
- External light < 10,000 lux (indoor) - Scans with quadpod can be performed i	in another stationary scan situation	a g with 3D-Scanner ct	anding on table		
scans with quadpod can be performed i	in another stationally scall situation,	c.δ. with 50-standed St			

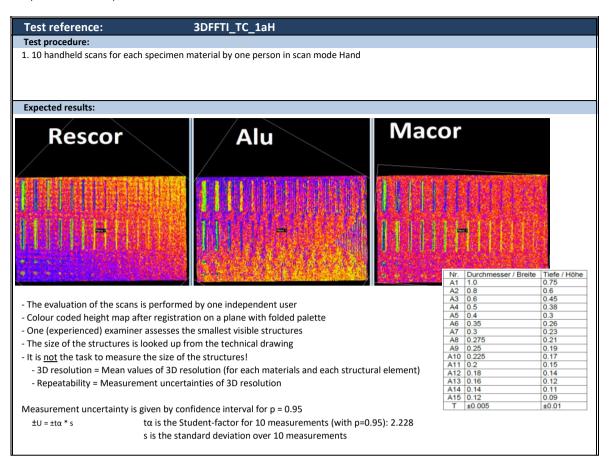
Protocol: 3DFFTI_Developmental_Validation Rev. 0_28 04/03/2020

Test reference:

3DFFTI_TC_1a


Results:

2.228 Student-factor for two-sided confidence interval 0.95 with 10 measurements https://en.wikipedia.org/wiki/Student%27s_t-distribution


<u>Rescor</u>	Sm	nallest struct	ure Quad [m	m]
Scan-ID	High bars	Deep bars	High dots	Deep dots
1486	0.200	0.180	0.350	0.400
1487	0.200	0.180	0.400	0.400
1488	0.225	0.200	0.350	0.350
1489	0.200	0.180	0.350	0.350
1490	0.225	0.200	0.350	0.400
1491	0.200	0.200	0.350	0.350
1492	0.225	0.200	0.400	0.350
1493	0.200	0.200	0.400	0.400
1494	0.225	0.200	0.350	0.400
1495	0.200	0.180	0.400	0.400
3D resolution MEAN [mm]	0.210	0.192	0.370	0.380
Repeatability UNC [mm]	0.029	0.023	0.058	0.058
3D resolution BEST [mm]	0.200	0.180	0.350	0.350
3D resolution WORST [mm]	0.225	0.200	0.400	0.400
Repeatability RANGE [mm]	0.025	0.020	0.050	0.050

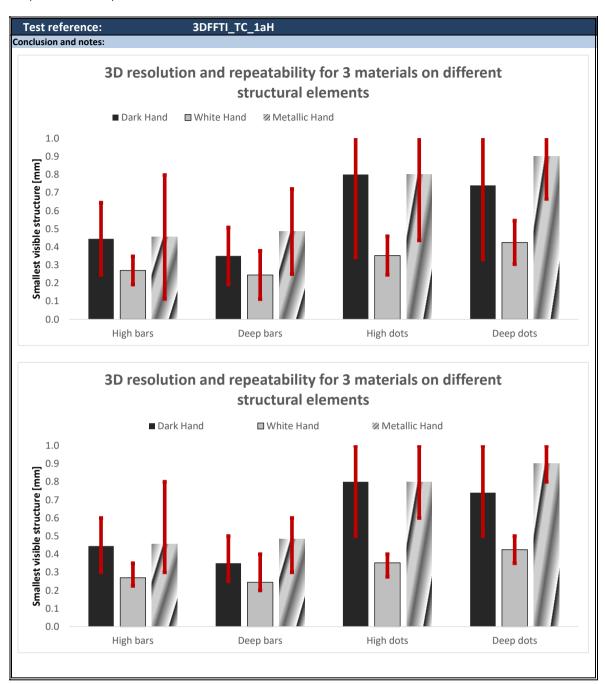
Macor	Sn	nallest struct	ure Quad [m	m]
Scan-ID	High bars	Deep bars	High dots	Deep dots
1496	0.140	0.120	0.300	0.275
1497	0.160	0.140	0.225	0.275
1498	0.140	0.120	0.275	0.350
1499	0.160	0.140	0.300	0.300
1500	0.140	0.140	0.300	0.300
1501	0.140	0.140	0.275	0.300
1502	0.140	0.140	0.300	0.275
1503	0.160	0.140	0.275	0.300
1504	0.140	0.140	0.275	0.275
1505	0.140	0.120	0.275	0.300
3D resolution MEAN [mm]	0.146	0.134	0.280	0.295
Repeatability UNC [mm]	0.022	0.022	0.051	0.051
3D resolution BEST [mm]	0.140	0.120	0.225	0.275
3D resolution WORST [mm]	0.160	0.140	0.300	0.350
Repeatability RANGE [mm]	0.020	0.020	0.075	0.075

<u>Aluminium</u>	Sn	nallest struct	ure Quad [m	im]
Scan-ID	High bars	Deep bars	High dots	Deep dots
1506	0.250	0.300	0.350	0.350
1507	0.250	0.275	0.400	0.350
1508	0.225	0.275	0.400	0.400
1509	0.250	0.275	0.400	0.350
1510	0.225	0.300	0.350	0.400
1511	0.250	0.300	0.350	0.400
1512	0.225	0.275	0.400	0.350
1513	0.250	0.275	0.400	0.350
1514	0.250	0.300	0.400	0.350
1515	0.250	0.275	0.400	0.400
3D resolution MEAN [mm]	0.243	0.285	0.385	0.370
Repeatability UNC [mm]	0.027	0.029	0.054	0.058
3D resolution BEST [mm]	0.225	0.275	0.350	0.350
3D resolution WORST [mm]	0.250	0.300	0.400	0.400
Repeatability RANGE [mm]	0.025	0.025	0.050	0.050

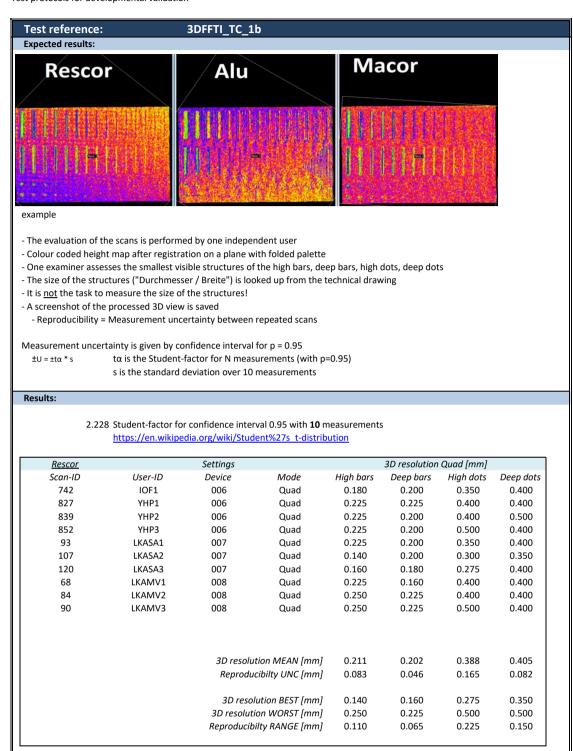
Protocol: 3DFFTI_Developmental_Validation Rev. 0_28 04/03/2020

Test reference:

3DFFTI_TC_1aH


Results:

2.228 Student-factor for two-sided confidence interval 0.95 with 10 measurements https://en.wikipedia.org/wiki/Student%27s t-distribution


<u>Rescor</u>	Sn	nallest struct	ure Hand [m	m]
Scan-ID	High bars	Deep bars	High dots	Deep dots
1275	0.500	0.500	1.000	0.800
1276	0.400	0.400	1.000	1.000
1535	0.300	0.300	0.500	0.500
1536	0.400	0.250	0.800	0.800
1537	0.350	0.350	0.800	0.600
1538	0.500	0.350	0.600	0.600
1539	0.500	0.300	0.800	0.800
1540	0.600	0.300	1.000	1.000
1541	0.400	0.350	1.000	0.800
1542	0.500	0.400	0.500	0.500
3D resolution MEAN [mm]	0.445	0.350	0.800	0.740
Repeatability UNC [mm]	0.200	0.158	0.458	0.409
3D resolution BEST [mm]	0.300	0.250	0.500	0.500
3D resolution WORST [mm]	0.600	0.500	1.000	1.000
Repeatability RANGE [mm]	0.300	0.250	0.500	0.500

Macor	Sn	Smallest structure Hand [mm]				
Scan-ID	High bars	Deep bars	High dots	Deep dots		
1543	0.225	0.200	0.300	0.400		
1544	0.250	0.250	0.275	0.400		
1545	0.250	0.200	0.400	0.400		
1546	0.300	0.200	0.350	0.400		
1547	0.275	0.275	0.350	0.350		
1548	0.275	0.225	0.300	0.400		
1549	0.250	0.250	0.400	0.500		
1550	0.250	0.225	0.400	0.400		
1551	0.350	0.400	0.350	0.500		
1552	0.275	0.225	0.400	0.500		
3D resolution MEAN [mm]	0.270	0.245	0.353	0.425		
Repeatability UNC [mm]	0.078	0.133	0.106	0.120		
3D resolution BEST [mm]	0.225	0.200	0.275	0.350		
3D resolution WORST [mm]	0.350	0.400	0.400	0.500		
Repeatability RANGE [mm]	0.125	0.200	0.125	0.150		

<u>Aluminium</u>	Sn	nallest struct	ure Hand [m	m]
Scan-ID	High bars	Deep bars	High dots	Deep dots
1553	0.500	0.600	1.000	1.000
1554	0.300	0.300	0.600	0.800
1555	0.600	0.600	0.800	0.800
1556	0.400	0.500	0.800	1.000
1557	0.300	0.350	0.600	1.000
1558	0.800	0.600	0.800	0.800
1559	0.350	0.400	0.600	1.000
1560	0.500	0.500	1.000	1.000
1561	0.400	0.500	0.800	0.800
1562	0.400	0.500	1.000	0.800
3D resolution MEAN [mm]	0.455	0.485	0.800	0.900
Repeatability UNC [mm]	0.342	0.235	0.364	0.235
3D resolution BEST [mm]	0.300	0.300	0.600	0.800
3D resolution WORST [mm]	0.800	0.600	1.000	1.000
Repeatability RANGE [mm]	0.500	0.300	0.400	0.200

Test reference:	3DFFTI_TC_1b						
Test name:	3D resolution reproducibility	Location:	varying	Date:	varying		
Tested requirements:	3D resolution of different under	rground materi	als, scan mode	Quad,			
	under influence of varying user	and device					
Test set-up:							
- 3D resolution specimens							
- in materials Rescor, Macor, Aluminium							
- Variation of users and device							
 white translucent Macor is used to determine the resolution under the limitation of a translucent surface (snow) metallic shiny Aluminium is used to determine the resolution under the limitation of a shiny / wet surface Test assumptions, conditions & constraints:							
- NWD - Nominal working distance = 4	55 mm						
- FOV - Field of view (325 x 200 mm ²)							
- Exposure step 1							
- LED brightness optimal for specimen	material						
- Scan mode Quad							
 Standard parameters: center FOV, N Scans are made in cooperation with I 			<10.000 lx exte	ernal light, 20-25°C			
Test procedure:							
1. 3 scans per user of specimens Resco	or, Macor and Aluminium in scan r	node Quad					

3D resolution BEST [mm] 0.140 3D resolution WORST [mm] 0.200 Reproducibilty RANGE [mm] 0.060

3DFFTI_TC_1b

Settings

Device

006

006

006

006

007

007

007

008

008

Mode

Quad

Quad

Quad

Quad

Quad

Quad

Quad

Quad

Quad

3D resolution MEAN [mm]

Reproducibilty UNC [mm]

High bars

0.140

0.140

0.160

0.180

0.140

0.140

0.140

0.180

0.200

0.158

0.052

<u>Aluminium</u>	Settings			3D resolution Quad [mm]				
Scan-ID	User-ID	Device	Mode	High bars	Deep bars	High dots	Deep dots	
744	IOF1	006	Quad	0.180	0.200	0.400	0.350	
829	YHP1	006	Quad	0.275	0.250	0.600	0.500	
841	YHP2	006	Quad	0.180	0.225	0.350	0.400	
854	YHP3	006	Quad	0.225	0.200	0.500	0.400	
95	LKASA1	007	Quad	0.180	0.225	0.350	0.350	
109	LKASA2	007	Quad	0.180	0.200	0.350	0.300	
122	LKASA3	007	Quad	0.160	0.180	0.250	0.400	
70	LKAMV1	008	Quad	0.225	0.225	0.400	0.400	
86	LKAMV2	008	Quad	0.250	0.250	0.500	0.350	
92	LKAMV3	008	Quad	0.250	0.275	0.500	0.400	
		3D resolution MEAN [mm]		0.211	0.223	0.420	0.385	
		Reproducibilty UNC [mm]		0.088	0.065	0.230	0.118	
		3D resolution BEST [mm]		0.160	0.180	0.250	0.300	
		3D resolution WORST [mm]		0.275	0.275	0.600	0.500	
		Reproducibilty RANGE [mm]		0.115	0.095	0.350	0.200	

700829 — 3D-Forensics/FTI — H2020-FTIPilot-2015-1 SECURITY: CO Test protocols for developmental validation

User-ID

IOF1

YHP1

YHP2

YHP3

LKASA1

LKASA2

LKASA3

LKAMV1

LKAMV2

Test reference:

<u>Macor</u> Scan-ID

743

828

840

853

94

108

121

69

85

3D resolution Quad [mm]

High dots

0.250

0.350

0.350

0.350

0.300

0.300

0.300

0.250

0.275

0.303

0.090

0.250

0.350

0.100

Deep dots

0.350

0.275

0.300

0.300

0.275

0.275

0.275

0.275

0.350

0.297

0.071

0.275

0.350

0.075

Deep bars

0.120

0.120

0.140

0.160

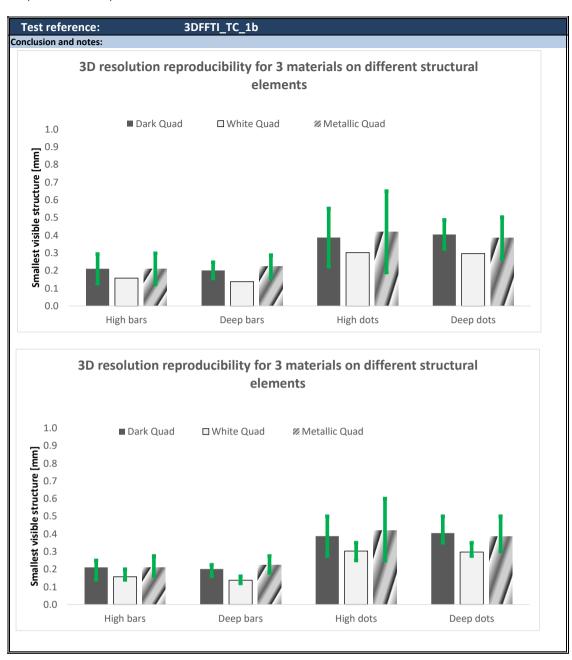
0.120

0.120

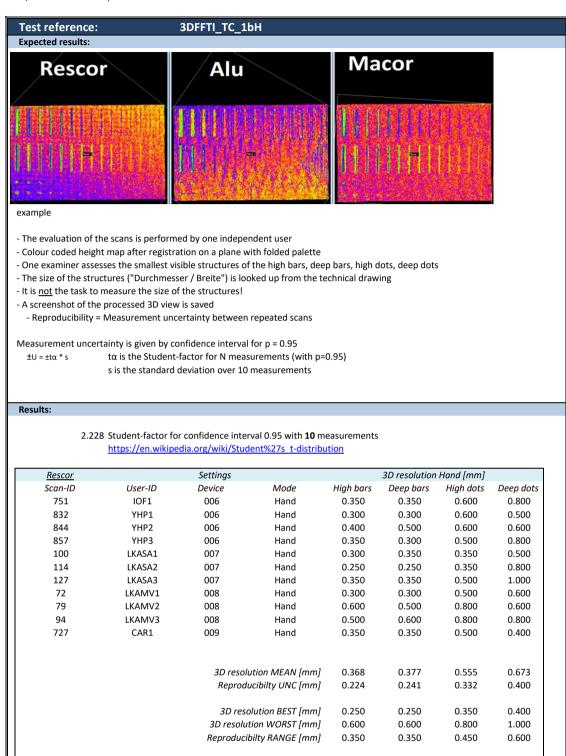
0.140

0.160

0.160

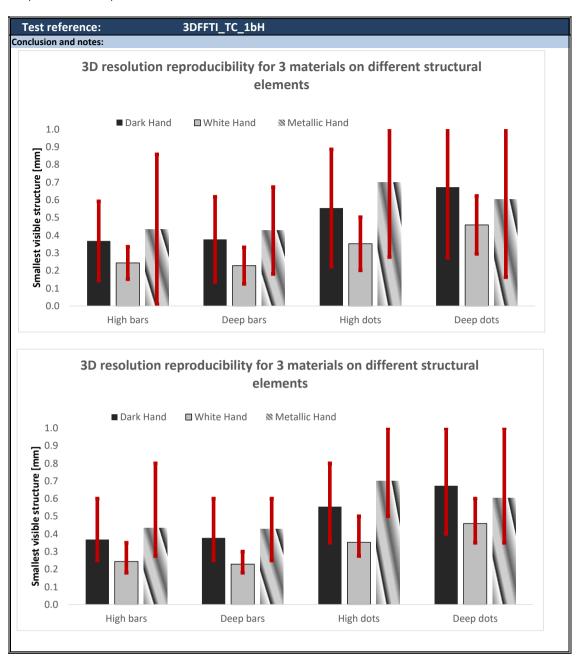

0.138

0.041


0.120

0.160

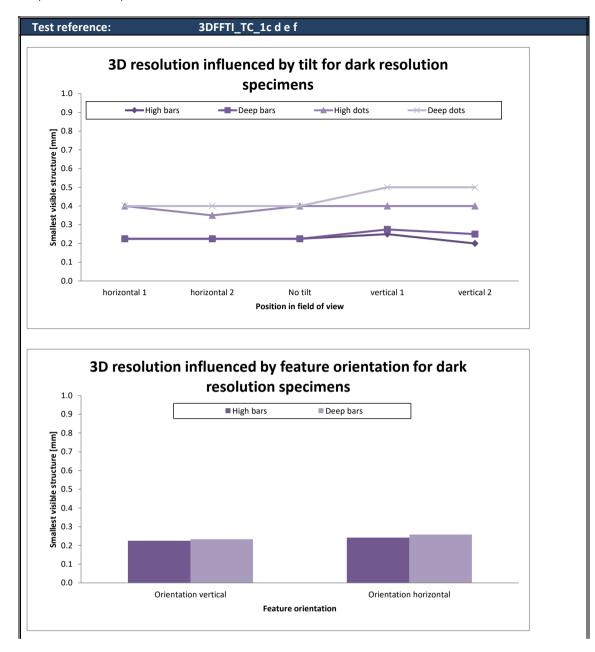
0.040



Test reference: 3DFFTI_TC_1bH								
	3D resolution reproducibility -							
Test name:	influence of scan mode	Location:	varying	Date:	varying			
Tested requirements:	•							
	under influence of varying user a	ind device						
Test set-up:								
- 3D resolution specimens								
	Rescor, Macor, Aluminium							
- Variation o	fusers and device							
	o determine the resolution under the o determine the resolution under the			· · ·				
Test assumptions, conditions & co	instraints:							
- NWD - Nominal working distance								
- FOV - Field of view (325 x 200 mm	²)							
- Exposure step 1								
- LED brightness optimal for specim	en material							
- Scan mode Hand								
•	, NWD, perpendicular orientation, ver		10.000 lx exterr	nal light, 20-25°C				
- Scans are made in cooperation wi	th EETG at different locations and diff	erent devices						
Test procedure:								
•								
1. 3 scans per user of specimens Re	scor, Macor and Aluminium in scan m	ode Hand						

Macor		Settings			3D resolution	Hand [mm]	
Scan-ID	User-ID	Device	Mode	High bars	Deep bars	High dots	Deep dots
753	IOF1	006	Hand	0.225	0.250	0.300	0.500
833	YHP1	006	Hand	0.250	0.275	0.275	0.400
845	YHP2	006	Hand	0.250	0.225	0.300	0.500
858	YHP3	006	Hand	0.250	0.225	0.350	0.350
99	LKASA1	007	Hand	0.250	0.200	0.350	0.400
113	LKASA2	007	Hand	0.225	0.180	0.300	0.500
126	LKASA3	007	Hand	0.180	0.180	0.400	0.500
73	LKAMV1	008	Hand	0.250	0.200	0.400	0.500
80	LKAMV2	008	Hand	0.350	0.300	0.500	0.600
95	LKAMV3	008	Hand	0.225	0.300	0.300	0.400
728	CAR1	009	Hand	0.225	0.180	0.400	0.400
		3D resolution MEAN [mm]		0.244	0.229	0.352	0.459
		Reproducibilty UNC [mm]		0.092	0.103	0.150	0.164
		3D resolution MIN [mm]		0.180	0.180	0.275	0.350
		3D resolution MAX [mm]		0.350	0.300	0.500	0.600
		Reproducibilty RANGE [mm]		0.170	0.120	0.225	0.250

<u>Aluminium</u>	Settings				3D resolution Hand [mm]			
Scan-ID	User-ID	Device	Mode	High bars	Deep bars	High dots	Deep dots	
755	IOF1	006	Hand	0.300	0.350	0.500	0.400	
834	YHP1	006	Hand	0.400	0.500	0.800	0.600	
846	YHP2	006	Hand	0.500	0.500	0.500	0.600	
859	YHP3	006	Hand	0.350	0.400	0.600	0.800	
98	LKASA1	007	Hand	0.275	0.400	0.500	0.350	
112	LKASA2	007	Hand	0.350	0.400	0.600	0.600	
125	LKASA3	007	Hand	0.350	0.250	0.800	0.500	
74	LKAMV1	008	Hand	0.300	0.350	0.600	0.800	
81	LKAMV2	008	Hand	0.800	0.600	1.000	0.400	
96	LKAMV3	008	Hand	0.800	0.600	1.000	1.000	
729	CAR1	009	Hand	0.350	0.350	0.800	0.600	
		3D resolution MEAN [mm] Reproducibilty UNC [mm] 3D resolution BEST [mm] 3D resolution WORST [mm]		0.434	0.427	0.700	0.605	
				0.424	0.246	0.423	0.441	
				0.275	0.250	0.500	0.350	
				0.800	0.600	1.000	1.000	
		Reproduci	Reproducibilty RANGE [mm]		0.350	0.500	0.650	



Test reference:	3DFFTI_TC_1c d e f				
Test name:	3D resolution robustness	Location:	IOF, Jena	Date:	21/02/2019
Tested requirements:	3D resolution robustness ag				
Test set-up:					
	aterial (dark matt) in scan mode Qu				
	hich can vary between scans are or	nly under limited	control by the device	or user:	
c) Distance to 3D Scanner					
d1) Position in field of view					
d2) Tilt relative to 3D Scanner					
d3) Orientation relative to 3D Scan	ner				
e) Temperature					
f) Sunlight					
- Robustness is slightly covered als	o in handheld Repeatability and Rep	producibility			
Test assumptions, conditions & co	onstraints:				
- NWD - Nominal working distance	= 455 mm				
- FOV - Field of view (325 x 200 mn	1 ²)				
- Exposure step 1					
- LED brightness optimal for specin	nen material				
- Scan mode Quad					
 Usage of quadpod 					
- Standard parameters: center FOV	, NWD, perpendicular orientation,	vertical rotation,	<10.000 lx external lig	ht, 20-25°C	
Test procedure:			<u>, , , , , , , , , , , , , , , , , , , </u>		
	m, NWD - 25 mm, NWD, NWD + 25				
	V, tilted position, horizontal and ve		, other standard parar	neters	
	e (-10+40°C), others standard par				
4. Scans under varying sunlight (m	easure sunlight intensity with Luxm	eter), others star	idard parameters		
Expected results:					
Rescor	Alu		Macor		
				相相	
	1000/4/				
- The evaluation of the scans is per	, ,				
 Colour coded height map after re One examiner assesses the smalle 	gistration on a plane with folded pa est visible structures of the high bar		n dots, deep dots		
 Colour coded height map after re One examiner assesses the smalle The size of the structures is looke 	gistration on a plane with folded pa est visible structures of the high bar d up from the technical drawing		n dots, deep dots		
 Colour coded height map after re One examiner assesses the smalle The size of the structures is looke It is <u>not</u> the task to measure the size 	gistration on a plane with folded pa est visible structures of the high bar d up from the technical drawing ize of the structures!	s, deep bars, hig			
 Colour coded height map after re One examiner assesses the smalle The size of the structures is looke It is <u>not</u> the task to measure the size 	gistration on a plane with folded pa est visible structures of the high bar d up from the technical drawing ize of the structures! n small variations of position, orien	s, deep bars, hig			

est reference	: 3	BDFFTI_TC_:	1cdef		
esults:					
Rescor		Smallest	t structure Quad	[mm]	
Scan-ID	Distance [mm]	High bars	Deep bars	High dots	Deep dots
1565	-50	0.160	0.140	0.350	0.350
1566	-25	0.225	0.180	0.400	0.400
1567	0	0.225	0.225	0.400	0.400
1568	25	0.300	0.275	0.500	0.400
1569	50	0.500	0.400	0.600	0.600
<u>Systematic:</u>	- Resolution is wors - But field of view as		ng distance		
<u>Rescor</u>	Devitt		t structure Quad		
Scan-ID	Position	High bars	Deep bars	High dots	Deep dots
1567	Center	0.225	0.225	0.400	0.400
1571	Corner LB	0.225	0.250	0.500	0.400
1570	Corner RB	0.300	0.300	0.500	0.500
1572	Corner LT	0.250	0.275	0.350	0.400
1573	Corner RT	0.350	0.275	0.500	0.400
<u>Systematic:</u>	- Slightly reduced re	solution in righ	t corners		
<u>Rescor</u>			t structure Quad		
Scan-ID	Tilt	High bars	Deep bars	High dots	Deep dots
1567	No tilt	0.225	0.225	0.400	0.400
1574	horizontal 1	0.225	0.225	0.400	0.400
1575	horizontal 2	0.225	0.225	0.350	
1576	vertical 1	0.250	0.275		0.400
1577			0.275	0.400	0.400 0.500
15//	vertical 2	0.200	0.275	0.400 0.400	
<u>Systematic:</u>	vertical 2 - No significant influ				0.500
		ence	0.250	0.400	0.500
		ence		0.400	0.500
<u>Systematic:</u>		ence	0.250	0.400	0.500 0.500
<u>Systematic:</u> <u>Rescor</u>	- No significant influ	ence Smallest	0.250 t structure Quad	0.400 [mm]	0.500 0.500
<u>Systematic:</u> <u>Rescor</u> Scan-ID	- No significant influ Orientation	ence Smallest High bars	0.250 t structure Quad Deep bars	0.400 [mm] High dots	0.500 0.500 Deep dots
<u>Systematic:</u> <u>Rescor</u> Scan-ID 928	- No significant influ Orientation Vertical	ence Smallest High bars 0.225 0.225 0.225	0.250 t structure Quad Deep bars 0.250	0.400 [mm] High dots 0.500	0.500 0.500 Deep dots 0.600
<u>Systematic:</u> <u>Rescor</u> Scan-ID 928 929	- No significant influ Orientation Vertical Vertical	ence Smallest High bars 0.225 0.225	0.250 t structure Quad Deep bars 0.250 0.225	0.400 [mm] High dots 0.500 0.500	0.500 0.500 Deep dots 0.600 0.500
<u>Systematic:</u> <u>Rescor</u> Scan-ID 928 929	- No significant influ Orientation Vertical Vertical Vertical	ence Smallest High bars 0.225 0.225 0.225	0.250 t structure Quad Deep bars 0.250 0.225 0.225	0.400 [mm] High dots 0.500 0.500 0.500	0.500 0.500 Deep dots 0.600 0.500 0.500
<u>Systematic:</u> <u>Rescor</u> Scan-ID 928 929 930	- No significant influ Orientation Vertical Vertical Vertical Orientation vertical Horizontal	ence Smallest High bars 0.225 0.225 0.225 0.225 0.225 0.225	0.250 t structure Quad Deep bars 0.250 0.225 0.225 0.223 0.275	0.400 [mm] High dots 0.500 0.500 0.500 0.500	0.500 0.500 Deep dots 0.600 0.500 0.500 0.533 0.500
<u>Systematic:</u> <u>Rescor</u> Scan-ID 928 929 930 931	- No significant influ Orientation Vertical Vertical Vertical Orientation vertical	ence Smallest High bars 0.225 0.225 0.225 0.225 0.225 0.225 0.225	0.250 t structure Quad Deep bars 0.250 0.225 0.225 0.223 0.275 0.250	0.400 [mm] High dots 0.500 0.500 0.500 0.500 0.500	0.500 0.500 Deep dots 0.600 0.500 0.500 0.533
<u>Systematic:</u> <u>Rescor</u> Scan-ID 928 929 930 931 932 933	- No significant influ Orientation Vertical Vertical Vertical Orientation vertical Horizontal Horizontal	ence Smallest High bars 0.225 0.225 0.225 0.225 0.225 0.225	0.250 t structure Quad Deep bars 0.250 0.225 0.225 0.223 0.275	0.400 [mm] High dots 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 Deep dots 0.600 0.500 0.500 0.533 0.500 0.500

Test reference:		3DFFTI_TC_	1cdef				
	Sunlight intensity w				m optronik	7	
<u>Rescor</u>			t structure Quad				
Scan-ID	Sunlight [lx]	High bars	Deep bars	High dots	Deep dots		
955	750	0.180	0.180	0.350	0.400		
956	750	0.225	0.200	0.400	0.500		
935	5400	0.200	0.200	0.400	0.400		
936	5400	0.180	0.180	0.400	0.500		
940	21000	0.180	0.200	0.400	0.400		
941	21000	0.200	0.200	0.500	0.400		
946	28000	0.200	0.200	0.400	0.400		
947	28000	0.225	0.225	0.400	0.350		
960	41000	0.225	0.225	0.400	0.500	laser pointers no	ot visible
967	48000	0.250	0.250	0.500	0.400		
968	48000	0.250	0.250	0.500	0.500		
974	60000	0.600	0.600	1.000	1.000	very hard to find	-
975	60000	0.400	0.500	0.800	0.600	propriate light s	•
983	73000					bad light setting	
984	73000					bad light setting	
985	73000	0.300	0.300	0.600	0.500		
986	85000					bad light setting	
987	85000	0.800	1.000				
Custometica							
<u>Systematic:</u>							
	Temperature was n	neasured with a	thermometer "	tom-30" from BA	SEtech		
<u>Rescor</u>	remperature was n		t structure Quad		SECCI	7	
Scan-ID	Temperature [°C]	High bars	Deep bars	High dots	Deep dots		
1437	-2.5	0.180	0.180	0.350	0.300	ca. 2,500 lx	outdoors
1438	-2.5	0.200	0.160	0.350	0.350	ca. 2,500 lx	outdoors
1439	-2.5	0.180	0.160	0.300	0.350	ca. 2,500 lx	outdoors
925	3.3	0.225	0.225	0.400	0.500	ca. 2,500 lx	outdoors
926	3.3	0.250	0.225	0.400	0.500	ca. 2,500 lx	outdoors
992	6.7	0.250	0.250	0.500	0.500	,	
993	6.7	0.225	0.225	0.500	0.400		
1046	13.2	0.225	0.250	0.400	0.350		
1047	13.2	0.200	0.200	0.400	0.400		
1567	23.0	0.225	0.225	0.400	0.400		
935	23.0	0.200	0.200	0.400	0.400		
936	23.0	0.180	0.180	0.400	0.500		
955	26.5	0.180	0.180	0.350	0.400		
956	26.5	0.225	0.200	0.400	0.500		
978	31.0	0.180	0.180	0.350	0.400		
979	31.0	0.180	0.180	0.350	0.400		
Systematic:							
·							

Test reference: 3DFFTI_TC_1c d e f Conclusion and notes: 3D resolution influenced by working distance for dark resolution specimens 1.0 - Deep bars High bars High dots ----- Deep dots 0.9 **Smallest visible structure [mm]** 0.0 0.0 0.0 0.0 0.2 0.2 0.1 0.0 -25 0 25 50 -50 Distance (relative to nominal distance of 455 mm) [mm] 3D resolution influenced by position in field of view for dark resolution specimens 1.0 High bars - Deep bars High dots ----- Deep dots 0.9 0.8 visible structure [mm] 0.7 0.6 0.5 0.4 **Smallest** 0.3 0.1 0.0 Corner LB Corner LT Center Corner RB Corner RT Position in field of view

Ж

20,000

 \mathbf{X}

30,000

Ж

10,000

0.1 0.0 0

Test reference: 3DFFTI_TC_1c d e f 3D resolution influenced by temperature for dark resolution specimens 1.0 High bars Deep bars A High dots × Deep dots 0.9 **Smallest visible structure [mm]** 0.7 0.0 0.0 0.3 0.2 $\underline{\times}$ \times \times $\underline{\times}$ \times × Ж X 0.1 0.0 0 40 -10 -5 5 10 15 20 25 35 30 Temperature [°C] 3D resolution influenced by sunlight intensity for dark resolution specimens High bars Deep bars A High dots Deep dots 1.0 $\underline{\times}$ 0.9 \times $\underline{\times}$

٠

60,000

80,000

90,000

100,000


70,000

40,000

50,000

Sunlight intensity [lux]

Test reference: Expected results:

3DFFTI_TC_3a

Exported .csv files with deviation between measured and calibrated circles positions
 Exported .csv files with deviations between 3D coordinates of circle positions and their photo position

- The circle no. 11 is taken as reference location, thus its deviation is 0

- 3D accuracy length measurement error = Mean values over all circle position deviations

- Repeatability 3D accuracy length measurement error = Measurement uncertainties circle positions
- 3D accuracy probing error = Standard deviation from plane in an area of ca. 40x40 \mbox{mm}^2
- Repeatability 3D accuracy probing error =Stability of standard deviation in an area of ca. 40x40 mm²
- Colour mapping accuracy = Mean values of alignment deviations of cirlce centers
- Repeatability colour mapping accuracy = Measurement uncertainties alignment deviations of circle centers

Results:

1.960 Confidence-factor for two-sided confidence interval 0.95

<u>Quadpod</u>		
	3D accuracy LME	3D accuracy FOV
Scan-ID	[mm]	variance [mm]
1351	0.026	0.058
1352	0.026	0.056
1353	0.028	0.055
1354	0.025	0.060
1355	0.028	0.059
1356	0.028	0.060
1357	0.026	0.057
1358	0.027	0.057
1359	0.026	0.056
1360	0.029	0.060
3D accuracy LME MEAN [mm]	0.027	
Repeatability LME UNC [mm]	0.008	
Robustness LME FOV MEAN [mm]		0.057
Robustness LME FOV WORST [mm]		0.069

	Quad		
		3D accuracy PE	
	Scan-ID	[mm]	
	1351	0.035	
	1352	0.035	
	1353	0.035	
	1354	0.035	
	1355	0.035	
	1356	0.035	
	1357	0.035	
	1358	0.035	
	1359	0.035	
	1360	0.035	
3D accur	acy PE MEAN [mm]	0.035	
Repeato	ibility PE UNC [mm]	0.000	

est reference:	:	3DFFTI_TC_3a			
	5D Mark IV 50mm 1px= 0.05 mm				
	Quad				
				Colour mapping	Colour mapping
		Colour mapping	Colour mapping	accuracy FOV	accuracy FOV
	Scan-ID	accuracy [px]	accuracy [mm]	variance [px]	variance [mm]
	1351	0.795	0.040	0.807	0.040
	1352	0.802	0.040	0.832	0.042
	1353	0.861	0.043	0.951	0.048
	1354	0.802	0.040	0.783	0.039
	1355	0.815	0.041	0.857	0.043
	1356	0.798	0.040	0.919	0.046
	1357	0.826	0.041	0.843	0.042
	1358	0.819	0.041	0.894	0.045
	1359	0.824	0.041	0.858	0.043
	1360	0.822	0.041	0.864	0.043
Colour mapping accu	racy MEAN [px,mm]	0.816	0.041		
Repeat	ability UNC [px,mm]	0.162	0.008		
	Robus	stness Colour Mapping	FOV MEAN [px,mm]	0.842	0.042
	Robust	ness Colour Mapping	FOV WORST [px,mm]	3.494	0.175

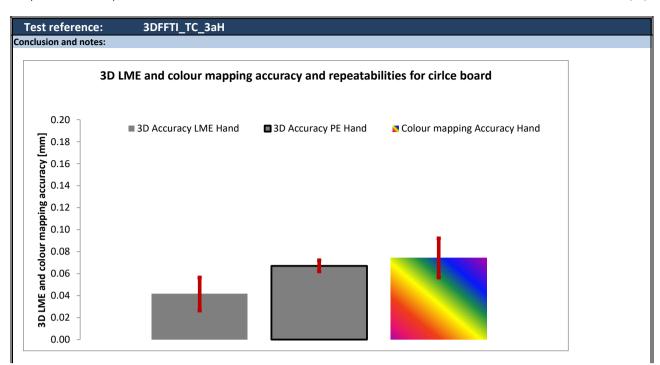
est reference: clusion and notes		'C_3a	
	3D LME and colour mapping	accuracy and repeatabil	ities for cirlce board
0.20	3D Accuracy LME Quad	3D Accuracy PE Quad	Colour mapping Accuracy Quad
0.18 -			,
0.16 -			
0.14			
0.12 -			
0.10			
0.18 - 0.16 - 0.14 - 0.12 - 0.10 - 0.08 - 0.06 - 0.04 - 0.02 -			
0.06 -			
0.04 -			
0.04			
0.02			

Test reference: 3DFFTI_TC_3aH 3D accuracy, colour mapping accuracy and corresponding repeatabilities - influence of scan IOF, Jena 20/02/2018 Test name: mode Location: Date: **Tested requirements:** 3D accuracy, colour mapping accuracy and corresponding repeatabilities, scan mode Hand Test set-up: - Circle board Ľ C C K. C Test assumptions, conditions & constraints: - NWD - Nominal working distance = 455 mm - FOV - Field of view (325 x 200 mm²) - Exposure step 1 - LED brightness optimal for specimen material - Scan mode Hand - External light <10,000 lux (indoor) - Specimen in center of FOW, at NWD, Scanner in perpendicular scan orientation Test procedure: 1. 10 handheld scans + photo by one person in scan mode Hand

Protocol: 3DFFTI_Developmental_Validation Rev. 0_28 04/03/2020

Test reference: 3DFFTI_TC_3aH Expected results:

- Exported .csv files with deviation between measured and calibrated circles positions
- Exported .csv files with deviations between 3D coordinates of circle positions and their photo position
- The circle no. 11 is taken as reference location, thus its deviation is 0
- 3D accuracy length measurement error = Mean values over all circle position deviations
- Repeatability 3D accuracy length measurement error = Measurement uncertainties circle positions
- 3D accuracy probing error = Standard deviation from plane in an area of ca. 40x40 mm²
- Repeatability 3D accuracy probing error =Stability of standard deviation in an area of ca. 40x40 mm²
- Colour mapping accuracy = Mean values of alignment deviations of cirlce centers
- Repeatability colour mapping accuracy = Measurement uncertainties alignment deviations of circle centers


Results:

1.960 Confidence-factor for two-sided confidence interval 0.95

	<u>Hand</u>		
		3D accuracy	3D accuracy FOV variance
	Scan-ID	LME [mm]	[<i>mm</i>]
	1361	0.040	0.097
	1362	0.040	0.099
	1364	0.042	0.105
	1365	0.040	0.109
	1368	0.042	0.106
	1369	0.040	0.099
	1370	0.043	0.110
	1371	0.039	0.097
	1372	0.044	0.110
	1373	0.044	0.109
3D accur	acy LME MEAN [mm]	0.041	
Repeato	bility LME UNC [mm]	0.015	
Robustness L	.ME FOV MEAN [mm]		0.102
	ME FOV WORST [mm]		0.158

	<u>Hand</u>	
		3D accuracy
	Scan-ID	PE [mm]
	1361	0.066
	1362	0.067
	1364	0.065
	1365	0.073
	1368	0.064
	1369	0.068
	1370	0.066
	1371	0.066
	1372	0.067
	1373	0.069
3D acci	uracy PE MEAN [mm]	0.067
Repea	tability PE UNC [mm]	0.005

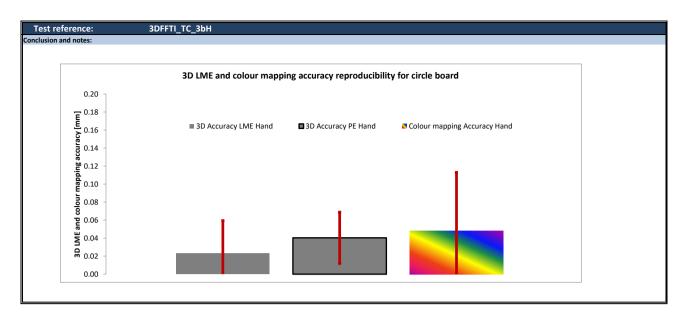
Test reference:	3DFFTI_TC_3aH				
	5D Mark IV 50mm	1px=	0.05	mm	
	<u>Hand</u>				
				Colour	
		Colour		mapping	Colour mapping
		mapping	Colour mapping accuracy	accuracy FOV	accuracy FOV
	Scan-ID	accuracy [px]	[mm]	variance [px]	variance [mm]
	1361	1.436	0.072	1.531	0.077
	1362	1.372	0.069	1.495	0.075
	1364	1.619	0.081	1.413	0.071
	1365	1.228	0.061	1.348	0.067
	1368	1.342	0.067	1.192	0.060
	1369	1.464	0.073	1.432	0.072
	1370	1.437	0.072	1.351	0.068
	1371	1.590	0.079	1.732	0.087
	1372	1.530	0.076	1.543	0.077
	1373	1.842	0.092	1.909	0.095
Colour mappin	ng accuracy MEAN [px,mm]	1.486	0.074		
	Repeatability UNC [px,mm]	0.357	0.018		
Robus	tness Colour Mapping FOV	MEAN [px,mm]		1.505	0.075
Robusti	ness Colour Mapping FOV V	VORST [px,mm]		6.558	0.328

Test reference:	3DFFTI_TC_3b				
	Reproducibilty of 3D accuracy and				
Test name:	colour mapping accuracy	Location:	varying	Date:	varyir
Tested requirements:	Reproducibilty of 3D accuracy and colou	ir mapping accurat	cy, scan mode Quad		
Test set-up:					
- Circle board					
Test assumptions, conditions &					
- NWD - Nominal working distan					
- FOV - Field of view (325 x 200 r	mm²)				
- Exposure step 1	day a second a dat				
 LED brightness optimal for species Scan mode Quad 	umen material				
 Scan mode Quad External light <10,000 lux (indo 	por				
	OV, NWD, perpendicular orientation, vertical ro				
			external light 20-25°C		
	with EETG at different locations and each EETG				
- Scans are made in cooperation					
- Scans are made in cooperation Test procedure:	with EETG at different locations and each EETG	G member with dif			
- Scans are made in cooperation Test procedure:		G member with dif			
- Scans are made in cooperation Test procedure:	with EETG at different locations and each EETG	G member with dif			
- Scans are made in cooperation Test procedure:	with EETG at different locations and each EETG	G member with dif			
- Scans are made in cooperation Test procedure:	with EETG at different locations and each EETG	G member with dif			
- Scans are made in cooperation Test procedure: 1. 1 scan + photo per user wiht o Expected results:	with EETG at different locations and each EETG	G member with dif			
Scans are made in cooperation Test procedure: 1. 1 scan + photo per user wiht c Expected results: - Exported .csv files with deviation	with EETG at different locations and each EETG others standard parameters in scan mode Quac	G member with dif	ferent device		
Scans are made in cooperation Test procedure: 1. 1 scan + photo per user wiht c Expected results: - Exported .csv files with deviation	with EETG at different locations and each EETG	G member with dif	ferent device		
Scans are made in cooperation Test procedure: 1. 1 scan + photo per user wiht c Expected results: Exported .csv files with deviation Exported .csv files with deviation	with EETG at different locations and each EETG others standard parameters in scan mode Quac	G member with dif	ferent device		
- Scans are made in cooperation Test procedure: 1. 1 scan + photo per user wiht c Expected results: - Exported .csv files with deviatic - Exported .csv files with deviatic - The circle no. 11 is taken as ref	with EETG at different locations and each EETG others standard parameters in scan mode Quac on between measured and calibrated circles po ons between 3D coordinates of circle positions	G member with dif	ferent device		
Scans are made in cooperation Test procedure: 1. 1 scan + photo per user wiht o Expected results: Exported .csv files with deviatio Exported .csv files with deviatio The circle no. 11 is taken as ref Reproducibility 3D accuracy ler	with EETG at different locations and each EETG others standard parameters in scan mode Quac on between measured and calibrated circles po ons between 3D coordinates of circle positions erence location, thus its deviation is 0	G member with dif	ferent device		
Scans are made in cooperation Test procedure: 1. 1 scan + photo per user wiht o Expected results: Exported .csv files with deviatio Exported .csv files with deviatio The circle no. 11 is taken as ref Reproducibility 3D accuracy ler Reproducibility 3D accuracy priv	with EETG at different locations and each EETG others standard parameters in scan mode Quac on between measured and calibrated circles po ons between 3D coordinates of circle positions erence location, thus its deviation is 0 ngth measurment error = Standard deviation be	G member with dif	ferent device		

Test reference: 3DFFTI_TC_3b

		Settings				Accuracy Quad			
Scan-ID	User-ID	Device	Mode	3D accuracy LME [mm]	3D accuracy LME variance FOV [mm]	3D accuracy PE [mm]	Colour mapping accuracy [px]	Colour mapping accuracy [mm]	
761	IOF1	006	Quad	0.020	0.051	0.020	0.422	0.032	EOS100D 28r
825	YHP1	006	Quad	0.014	0.038	0.027	0.415	0.031	1px = 0.075m
837	YHP2	006	Quad	0.016	0.039	0.024	0.370	0.028	EOS100D 28r
850	YHP3	006	Quad	0.015	0.040	0.028	0.387	0.029	1px = 0.075n
92	LKASA1	007	Quad	0.021	0.049	0.023	1.368	0.068	5D Mark IV 5
106	LKASA2	007	Quad	0.019	0.049	0.026	1.321	0.066	1px = 0.05m
119	LKASA3	007	Quad	0.021	0.048	0.027	1.294	0.065	
67	LKAMV1	008	Quad	0.021	0.048	0.026	0.495	0.035	EOS200D 28
83	LKAMV2	008	Quad	0.037	0.078	0.025	0.440	0.031	1px = 0.07m
89	LKAMV3	008	Quad	0.038	0.085	0.031	0.460	0.032	
									5D Mark IV
									1px = 0.05m
3D ac	curacy LME MEAN		accuracy MEAN [mm] oducibility UNC [mm]	0.022 0.036		0.026 0.006		0.042 0.042	

Test reference:	3DFFTI_TC_3b			
Conclusion and notes:				
	3D LME and colour mapp	oing accuracy reproducibili	ity for circle board	
0.20				
돌 ^{0.18}				
<u>노</u> 0.16 -	3D Accuracy LME Quad	3D Accuracy PE Quad	Colour mapping Accuracy Quad	
p 0.14				
<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>				
B 0.10				
0.18 - 0.16 - 0.14 - 900.012 - 900.008 - 900.006 - 900.004 -			1	
9 0.06				
a a				
N 0.04				
R 0.02 -				
0.00				


Test reference:	3DFFTI_TC_3bH								
	Reproducibilty of 3D accuracy and								
	colour mapping accuracy - influence of								
Test name:	scan mode	Location:	varying	Date:	varying				
Tested requirements:	Reproducibilty of 3D accuracy and colou	r mapping accur							
Test set-up:									
- Circle board	- Circle board								
Test assumptions, conditions &	constraints								
- NWD - Nominal working distance									
- FOV - Field of view (325 x 200 m									
- Exposure step 1	,								
- LED brightness optimal for spec	imen material								
- Scan mode Hand									
- External light <10,000 lux (indoo	or)								
) V, NWD, perpendicular orientation, vertical ro	tation. <10.000	lx external light, 20-25°C						
	with EETG at different locations and each EETG								
Test procedure:									
1. 1 scan + photo per user wiht o	thers standard parameters in scan mode Hand								
Expected results:									
- Exported .csv files with deviatio	n between measured and calibrated circles pos	sitions							
	Exported Loss with deviations between the assister and active positions and their photo position								
- The circle no. 11 is taken as refe	erence location, thus its deviation is 0								
	gth measurment error = Standard deviation be		scans						
- Reproducibility 3D accuracy pro	bing error = Standard deviation between repea	ated scans							
- Reproducibility colour mapping	accuracy = Standard deviation between repeat	ted scans							
1									

Test reference: Results:

1.960 Confidence-factor for two-sided confidence interval 0.95

3DFFTI_TC_3bH

LME 3D accuracy PE [mm] Colour mapping Colour mapping				Settings		
[mm] accuracy [px] accuracy [mm]	3D accuracy LME variance FOV [mm]	3D accuracy LME [mm]	Mode	Device	User-ID	Scan-ID
0.021 0.350 0.026	0.042	0.020	Hand	006	IOF1	772
0.032 0.444 0.033 EOS1	0.037	0.014	Hand	006	YHP1	830
0.031 0.357 0.027 1px =	0.034	0.013	Hand	006	YHP2	842
0.028 0.357 0.027	0.039	0.017	Hand	006	YHP3	855
0.063 2.012 0.101 5D M	0.036	0.017	Hand	007	LKASA1	101
0.048 1.322 0.066 1px =	0.050	0.019	Hand	007	LKASA2	117
0.026 1.449 0.072	0.075	0.027	Hand	007	LKASA3	128
0.048 0.597 0.042 EOS2	0.074	0.033	Hand	008	LKAMV1	71
0.049 0.496 0.035 1px =	0.070	0.032	Hand	008	LKAMV2	78
0.058 0.706 0.049	0.084	0.037	Hand	008	LKAMV3	93
5D N						
1px =						
0.040 0.048		0.023	ccuracy MEAN [mm]	Colour mapping ad	curacy LME MEAN	3D ac

Test reference:	3DFFTI TC 3cde				
Test name:	Robustness of 3D accuracy and colour mapping accuracy	Location:	IOF, Jena	Date:	20/02/2019
Tested requirements:	Robustness of 3D accuracy and colour mapping a "Authentication" and "Checking correct operation"		•	ters.	
Test set-up:					
 Circle board c1) Distance to 3D Scanner c2) Tilt relative to 3D Scanner c3) Position in field of view d) Temperature e) Sunlight 					
Test assumptions, conditions &					
- Standard parameters: NWD, per	men material	ternal light, 20-2			
Test procedure: 1. Scans under changing distance 2. Scans under varying temperatu 3. Scans under varying sunlight					
Expected results:					
•	n between measured and calibrated circles positions ns between 3D coordinates of circle positions and their	photo position			
 Robustness 3D accuracy length Robustness 3D accuracy probing 	rence location, thus its deviation is 0 measurement error = Systematic influences / variation g error = Systematic influences / variation of 3D accurac uracy = Systematic influences / variation of colour map	су			

Test reference: Results:

	<u>3D accuracy</u>		
		3D accuracy LME	3D accuracy PE
Distance	Scan-ID	[<i>mm</i>]	[mm]
-50	1374	0.029	0.027
-25	1375	0.025	0.034
0	1376	0.023	0.044
25	1377	0.025	0.057
50	1378	0.031	0.074

3DFFTI_TC_3c d e

Systematic: - Probing error is increasing with distance

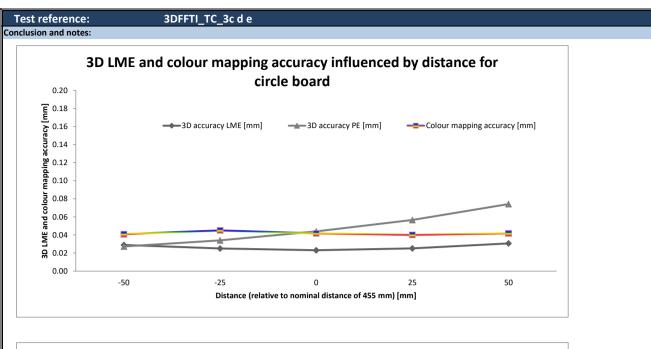
3D<u>accuracy</u>

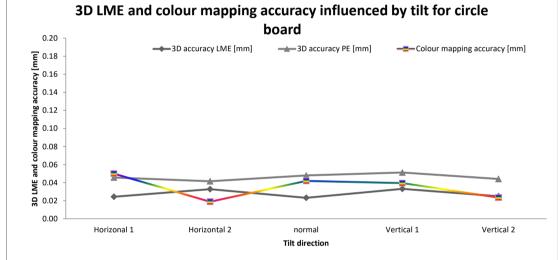
		3D accuracy LME	3D accuracy PE
Tilt	Scan-ID	[mm]	[<i>mm</i>]
Horizonal 1	1379	0.024	0.046
Horizontal 2	1380	0.033	0.042
Vertical 1	1382	0.033	0.048
Vertical 2	1384	0.025	0.051
normal	1376	0.023	0.044
Systematic:	- None		

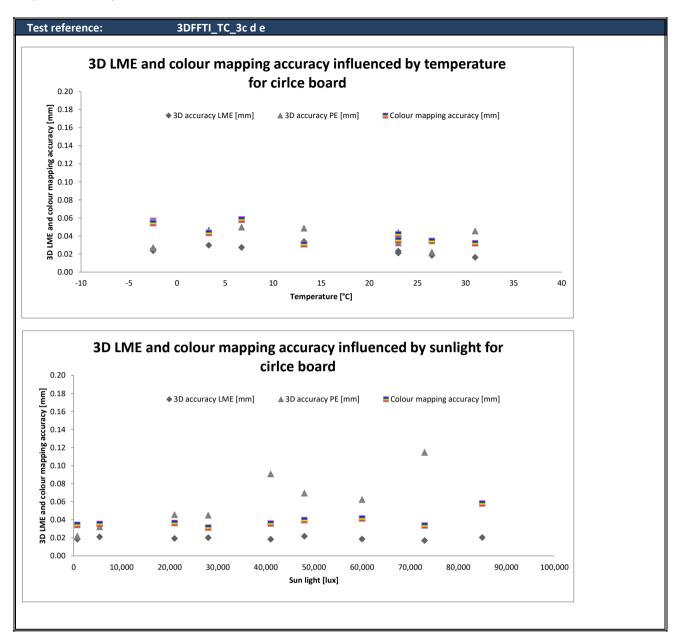
Tomporature was mansured	with a thormometer !	"tom 20" from DACEtoch
Temperature was measured	with a thermometer	tpm-so nom basetech

	<u>3D accuracy</u>		
		3D accuracy LME	3D accuracy PE
Temperature	Scan-ID	[mm]	[mm]
-2.5	1434	0.024	0.027
-2.5	1435	0.026	0.027
-2.5	1436	0.024	0.027
3.3	924	0.030	0.047
6.7	991	0.027	0.050
13.2	1045	0.034	0.049
23	1376	0.023	0.044
23	937	0.021	0.032
26.5	954	0.019	0.022
31	977	0.016	0.046
Systematic:	- None		

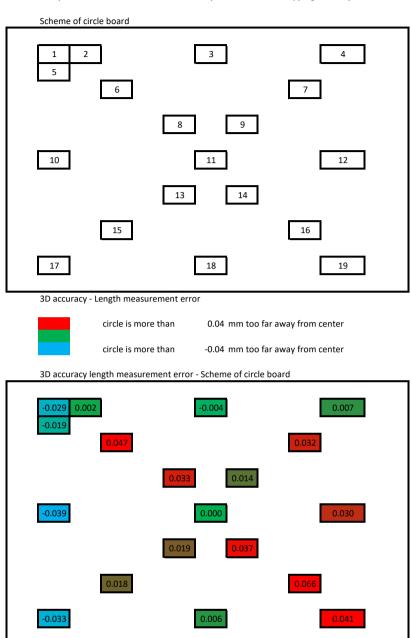
		3D accuracy LME	3D accuracy PE
Sunlight [lx]	Scan-ID	[<i>mm</i>]	[<i>mm</i>]
750	954	0.019	0.022
5,400	937	0.021	0.032
21,000	943	0.019	0.046
28,000	945	0.020	0.045
41,000	958	0.018	0.091
48,000	966	0.022	0.070
60,000	973	0.019	0.063
73,000	982	0.017	0.115
85,000	989	0.020	0.271
Systematic:	- PE is increasi	ng at values larger th	an ca. 40,000 lux
	- LME not influ	ienced	

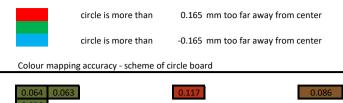

Sunlight intensity was measured with a Luxmeter "digilux 9500" from optronik


EOS 100D 28mm	1px=	0.075			
5D Mark IV 50mm	1px=	0.05	mm		
	Colour mapping accuracy				
		Colour mapping	Colour mapping		
Distance	Scan-ID	accuracy [px]	accuracy [mm]		
-50	1374	0.819	0.041		
-25	1375	0.901	0.045		
0	1376	0.836	0.042		
25	1377	0.802	0.040		
50	1378	0.835	0.042		
Systematic:	- None				


	Colour mapping accuracy						
Tilt Horizonal 1 Horizontal 2 Vertical 1 Vertical 2 normal	<i>Scan-ID</i> 1379 1380 1382 1384 1376	Colour mapping accuracy [px] 0.999 0.376 0.789 0.468 0.836	Colour mapping accuracy [mm] 0.050 0.019 0.039 0.023 0.042				
Systematic:	- None						

	<u>Colour ma</u>	pping accuracy	
		Colour mapping	Colour mapping
Tilt	Scan-ID	accuracy [px]	accuracy [mm]
-2.5	1434	1.129	0.056
-2.5	1435	1.104	0.055
-2.5	1436	1.086	0.054
3.3	924	0.578	0.043
6.7	991	0.774	0.058
13.2	1045	0.410	0.031
23	1376	0.836	0.042
23	937	0.472	0.035
26.5	954	0.460	0.035
31	977	0.425	0.032
Systematic:	- Sligthly red	uced colour mapping	g accuracy at low
	temperature		

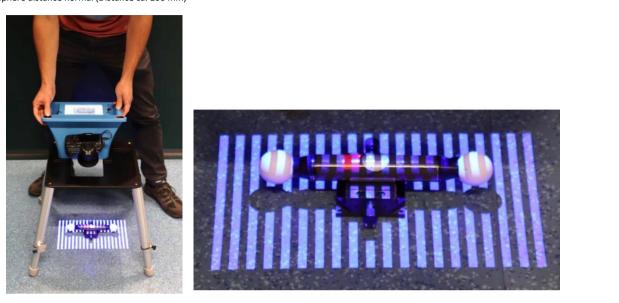

Colour mapping accuracy			
Sunlight [lx] 750 5,400 21,000	Scan-ID 954 937 943	Colour mapping accuracy [px] 0.460 0.472 0.486	Colour mapping accuracy [mm] 0.035 0.035 0.036
28,000 41,000	945 958	0.418 0.479	0.031 0.036
48,000 60,000	966 973	0.530	0.040
73,000 85,000	982 989	0.450	0.034 0.058
Systematic:	- None		





Influence of position in field of view on 3D accuracy LME and colour mapping accuracy

<u>Systematic:</u> - on left side, distances slightly too small - on right side, distances slightly too big Colour mapping accuracy



<u>Systematic:</u> - on top and bottom side the deviations are increased (but below the point pitch distance of 0,165mm

Test reference:	3DFFTI_TC_4a				
	3D accuracy in terms of length measurement and probing err				
Test name:	and repeatability	Location:	IOF, Jena	Date:	varying
Tested requirements:	3D accuracy in terms of length	measurement an	d probing error and repea	tability, scan mode Quad	

Test set-up:

- Sphere distance normal (Distance ca. 200 mm)

Test assumptions, conditions & constraints:

- NWD - Nominal working distance = 455 mm

- FOV Field of view (325 x 200 mm²)
- Exposure step 1
- LED brightness optimal for specimen material
- Scan mode Quad
- External light <10,000 lux (indoor)
- Scans with quadpod can be performed in another stationary scan situation, e.g. with 3D-Scanner on table

- Specimen in center of FOW, at NWD, Scanner in perpendicular scan orientation

3DFFTI_TC_4a

Test procedure: 1. 10 quadpod scans by one person in scan mode Quad

Expected results:

Test reference:

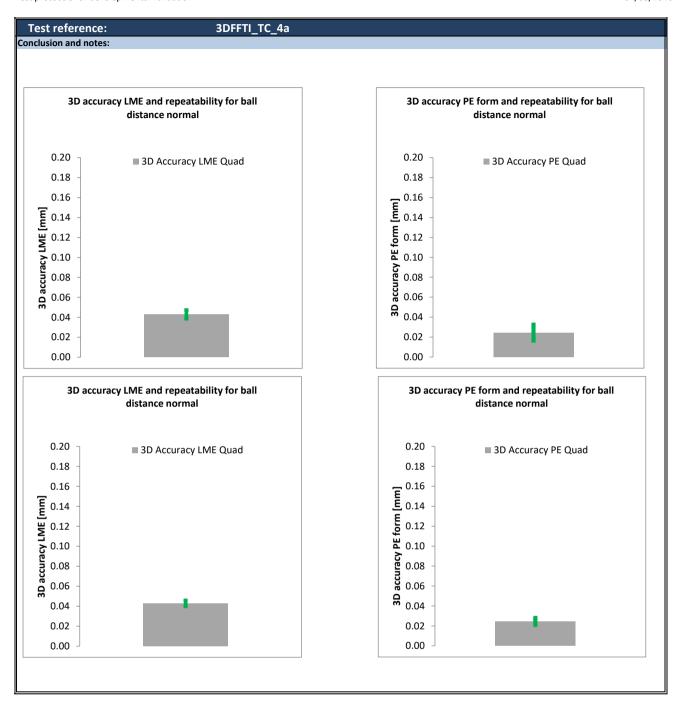
- Distances between sphere centers
- 3D accuracy length measurement error = Mean of sphere distance deviations
- Repeatability 3D accuracy length measurement error = Measurement uncertainty of 3D accuracy length measurement error
- Standard deviation of fitted spheres
- 3D accuracy probing error form = Mean of sphere deviations

- Repeatability 3D accuracy probing error form = Measurement uncertainty of 3D accuracy probing error

Results:

2.228 Student-factor for two-sided confidence interval 0.95 with 10 measurements https://en.wikipedia.org/wiki/Student%27s_t-distribution

Reference	199.926	
	<u>Quad</u>	
Scan-ID	Distances [mm]	Deviation [mm]
329	199.886	0.040
330	199.882	0.044
331	199.880	0.046
332	199.883	0.042
333	199.886	0.040
334	199.884	0.042
335	199.883	0.042
336	199.881	0.045
337	199.882	0.044
338	199.882	0.044
3D accui	racy LME MEAN [mm]	0.043
Repeate	ability LME UNC [mm]	0.004
3D acc	uracy LME BEST [mm]	0.040
3D accurd	acy LME WORST [mm]	0.046
Repeatabi	lity LME RANGE [mm]	0.006


Test reference:		3DFFTI_TC_4a
Reference	19.050	19.050
	Quad	
Scan-ID	Radius [mm]	Deviation [mm]
329	19.060	19.060
	19.066	19.066
330	19.061	19.061
	19.064	19.064
331	19.062	19.062
	19.063	19.063
332	19.062	19.062
	19.064	19.064
333	19.061	19.061
	19.064	19.064
334	19.061	19.061
	19.063	19.063
335	19.061	19.061
	19.063	19.063
336	19.073	19.073
	19.064	19.064
337	19.060	19.060
	19.063	19.063
338	19.062	19.062

	19.064	19.064
3D accuracy PE dim Repeatability PE di		19.063 0.006
3D accuracy PE dir 3D accuracy PE dime	nension BEST [mm] nsion WORST [mm]	19.060 19.073

Repeatability PE dimension RANGE [mm]

0.013

		<u>Quad</u>
	Scan-ID	Sphere standard deviation [mm]
	329	0.028
		0.021
	330	0.028
		0.021
	331	0.028
		0.021
	332	0.028
		0.021
	333	0.028
		0.021
	334	0.028
		0.021
	335	0.028
		0.021
	336	0.028
		0.021
	337	0.028
		0.021
	338	0.028
		0.021
3D accuracy F	PE form MEAN [mm]	0.025
Repeatability	/ PE form UNC [mm]	0.008
3D accuracy	PE form BEST [mm]	0.021
3D accuracy Pl	form WORST [mm]	0.028
Repeatability P	E form RANGE [mm]	0.007

Test reference:	3DFFTI_TC_4aH				
	3D accuracy in terms of length				
	measurement and probing error				
	and repeatability - influence of				
Test name:	scan mode	Location:	IOF, Jena	Date:	varyin
Tested requirements:	3D accuracy in terms of length me	easurement and p	robing error and repeatabil	ity, scan mode Hand	
Test set-up: - Sphere distance normal (Distance ca.					
Test assumptions, conditions & const - NWD - Nominal working distance = 4					
- NWD - Nominal working distance = 45					
 NWD - Nominal working distance = 45 FOV - Field of view (325 x 200 mm²) 					
 NWD - Nominal working distance = 45 FOV - Field of view (325 x 200 mm²) Exposure step 1 	55 mm				
 NWD - Nominal working distance = 45 FOV - Field of view (325 x 200 mm²) Exposure step 1 LED brightness optimal for specimen 	55 mm				
 NWD - Nominal working distance = 45 FOV - Field of view (325 x 200 mm²) Exposure step 1 LED brightness optimal for specimen Scan mode Hand 	55 mm				
 NWD - Nominal working distance = 45 FOV - Field of view (325 x 200 mm²) Exposure step 1 LED brightness optimal for specimen Scan mode Hand External light <10,000 lux (indoor) 	55 mm				

3DFFTI_TC_4aH

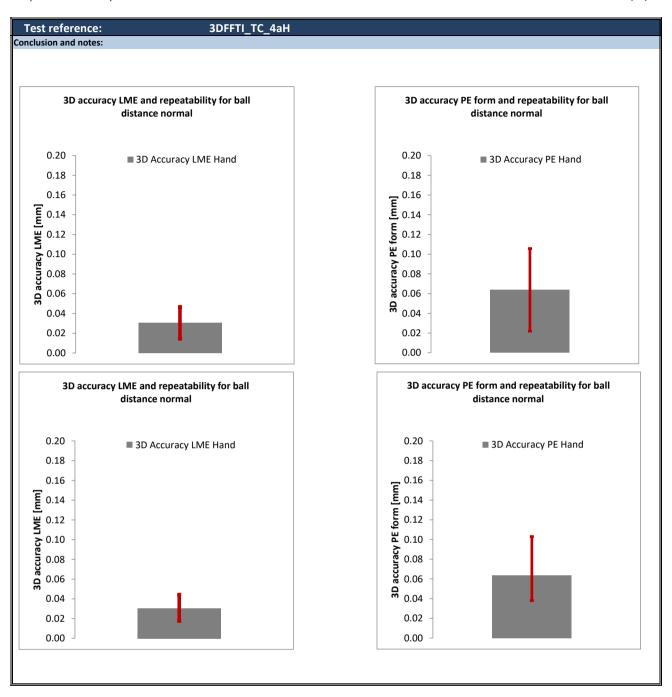
Test procedure: 1. 10 handheld scans by one person in scan mode Hand

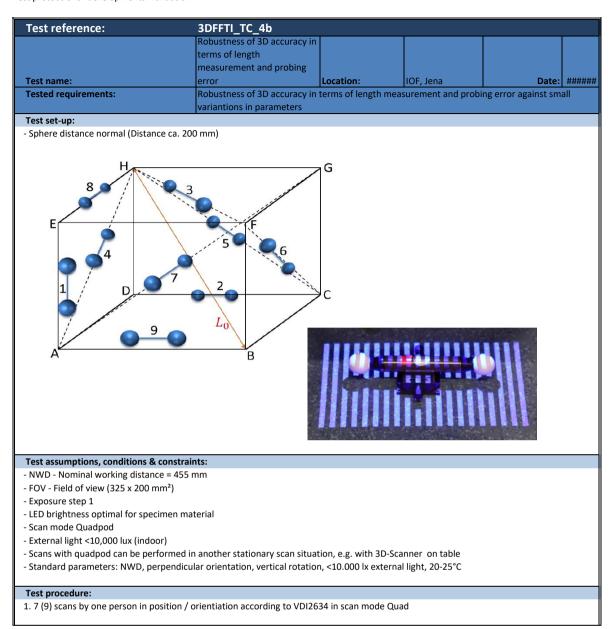
Expected results:

Test reference:

- Distances between sphere centers
- 3D accuracy length measurement error = Mean of sphere distance deviations
- Repeatability 3D accuracy length measurement error = Measurement uncertainty of 3D accuracy length measurement error
- Standard deviation of fitted spheres
- 3D accuracy probing error form = Mean of sphere deviations
- Repeatability 3D accuracy probing error form = Measurement uncertainty of 3D accuracy probing error

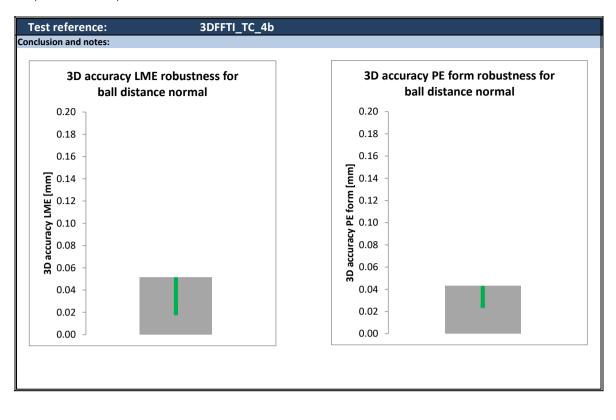
Results:


2.228 Student-factor for two-sided confidence interval 0.95 with 10 measurements https://en.wikipedia.org/wiki/Student%27s_t-distribution


Reference	199.926			
Handheld scans were done at a different time				
	<u>Hand</u>			
Scan-ID	Distances [mm]	Deviation [mm]		
1450	199.960	0.034		
1451	199.962	0.036		
1452	199.957	0.031		
1453	199.957	0.031		
1454	199.943	0.018		
1455	199.955	0.029		
1456	199.957	0.031		
1457	199.950	0.024		
1458	199.951	0.025		
1459	199.970	0.044		
3D accure	acy LME MEAN [mm]	0.031		
Repeata	bility LME UNC [mm]	0.016		
3D accu	racy LME BEST [mm]	0.018		
3D accurat	cy LME WORST [mm]	0.044		
Repeatability LME RANGE [mm] 0.027				

Test reference:	3DFFTI TC 4aH		
rest reference.	Reference	19.050	19.050
	Handheld scans were done at a different time Hand		
	Scan-ID	Radius [mm]	Deviation [mm]
	1450	19.084	0.034
		19.136	0.086
	1451	19.084	0.034
		19.114	0.064
	1452	19.082	0.032
		19.128	0.078
	1453	19.077	0.028
		19.093	0.043
	1454	19.025	0.025
		19.067	0.017
	1455	19.051	0.001
		19.066	0.016
	1456	19.080	0.030
		19.103	0.053
	1457	19.071	0.021
		19.092	0.042
	1458	19.076	0.026
		19.138	0.088
	1459	19.103	0.053
		19.074	0.024
	3D accuracy PE dir	nension MEAN [mm] 0.040
	Repeatability PE o	dimension UNC [mm] 0.053
	3D accuracy PE d	limension BEST [mm] 0.001
	3D accuracy PE dim	ension WORST [mm] 0.088
	Repeatability PE dim	ension RANGE [mm] 0.087

Handheld scans were done at a different time


		<u>Hand</u>
	Scan-ID	Sphere standard deviation [mm]
	1450	0.072
		0.061
	1451	0.061
		0.056
	1452	0.065
		0.064
	1453	0.052
		0.039
	1454	0.103
		0.085
	1455	0.100
		0.086
	1456	0.058
		0.048
	1457	0.039
		0.038
	1458	0.066
		0.078
	1459	0.058
		0.048
3D accuracy F	PE form MEAN [mm]	0.064
Repeatability	y PE form UNC [mm]	0.042
3D accuracy	PE form BEST [mm]	0.038
3D accuracy Pl	E form WORST [mm]	0.103
Repeatability P	E form RANGE [mm]	0.065

Use, duplication or disclosure of data contained on this sheet is subject to the restrictions on the front sheet of this document.

3DFFTI_TC_4b Test reference: Expected results: - Distances between sphere centers - Robustness 3D accuracy length measurement error = Maximum deviation of sphere distance (according to VDI) - Robustness 3D accuracy length measurement error = Systematic influences / variation of distance deviation - Standard deviation of fitted spheres - Robustness 3D accuracy probing error = Maximum sphere deviation (according to VDI) - Robustness 3D accuracy probing error = Systematic influences / variation of sphere deviations **Results:** 2.262 Student-factor for two-sided confidence interval 0.95 with 9 measurements https://en.wikipedia.org/wiki/Student%27s t-distribution Reference 199,926 VDI2634 Length measurement error Scan-ID Distances [mm] Deviation [mm] 308 199.930 0.004 315 199.882 0.044 0.030 199.956 311 309 199.959 0.033 324 199.885 0.041 326 199.954 0.029 313 199.884 0.041 310 199.945 0.019 312 199.874 0.052 0.052 Robustness LME [mm] 0.032 - No systematic effects Systematic: Reference 19.050 19.050 VDI2634 Probing error form Deviation [mm] Sphere standard deviation [mm] Radius [mm] Scan-ID Scan-ID 308 19.057 0.007 308 0.020 19.062 0.012 0.028 315 19.071 0.021 315 0.027 0.022 0.026 19.072 311 19.061 0.011 311 0.016 19.111 0.061 0.032 309 19.067 0.017 309 0.018 0.058 0.041 19.108 324 19.068 0.018 324 0.025 19.071 0.023 0.021 326 19.072 0.022 326 0.029 0.002 0.018 19.048 313 19.068 0.018 313 0.016 19.063 0.013 0.033 310 19.099 0.049 310 0.043 19.072 0.024 312 19.067 0.017 312 0.019 19.056 0.006 0.019 0.061 Robustness PE form [mm] Robustness PE dimension [mm] 0.043 0.038 0.018 <u>Systematic:</u> - No systematic effects Systematic: - No systematic effects

Test reference:	3DFFTI_TC_5a				
Test name: Tested requirements:	3D accuracy in terms of probing error and repeatability 3D accuracy in terms of probing er	Location: ror and repeatabil	IOF, Jena ity, scan mode Quad	Date:	06/02/2019
Test set-up: - Reference shoe sole / Mikrotrac	L :				
		J			
Test assumptions, conditions &	constraints:				
- NWD - Nominal working distance	e = 455 mm				
- FOV - Field of view (325 x 200 m	m²)				
- Exposure step 1					
- LED brightness optimal for speci	men material				
- Scan mode Quad					

- Scan mode Quad
- External light <10,000 lux (indoor)
- Scans with quadpod can be performed in another stationary scan situation, e.g. with 3D-Scanner on table
- Specimen in center of FOW, at NWD, Scanner in perpendicular scan orientation
- \underline{Not} move object during procedure

Test reference: 3DFFTI_TC_5a

Test procedure:

- 1. Reference scans: Quadpod, center of FOV, NWD, perpendicular scan orientation
- 1. 10 quadpod scans by one person in scan mode Quad
- Repeat for shoe sole and Mikrotrack impression

Geomagic Quality 12 evaluation chain:

- Manual pre-registration with 3 points
- BestFit Registration

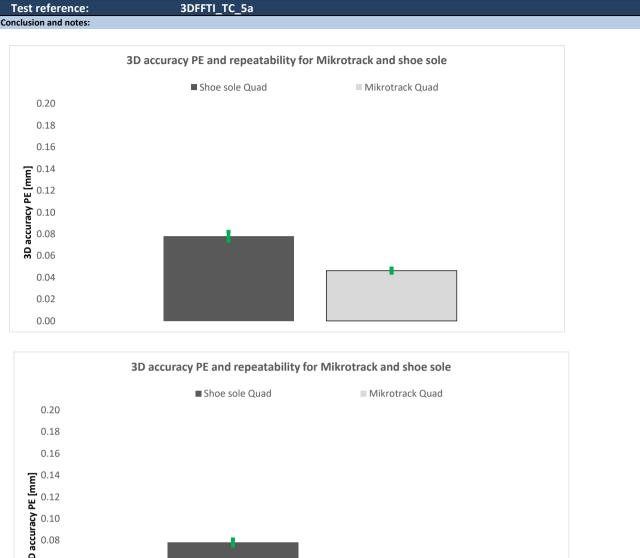
- 3D comparison (max. error 0.5 mm, critical angle 180°, 3D deviation) -> export deviation table (only deviation values)

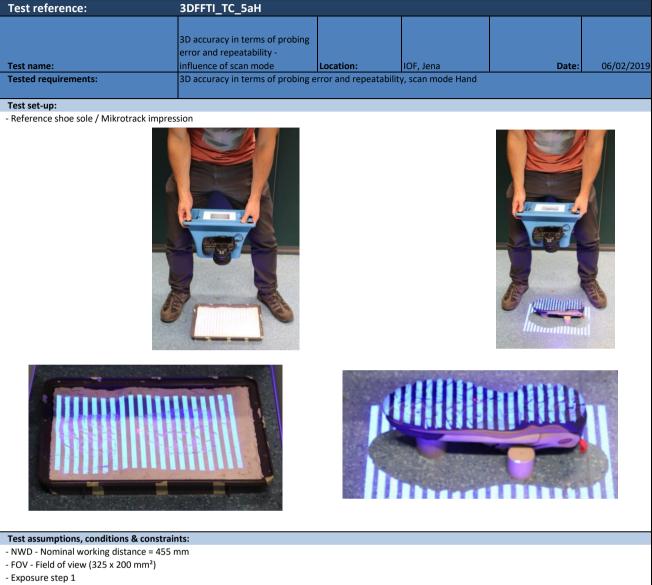
Expected results:

- Be aware that no deformations of the object itself are evaluated
- For Mikrotrack be aware that the specimen is not (too much) damaged

- Removel of outlier is necessary, especially for the handheld scans, because depending on the user the scans may contain slightly different parts of the specimen

- 3D accuracy probing error = Mean value of average distances
- Repeatability 3D accuracy probing error = Measurement uncertainties / standard deviation of average distances


2.228 Student-factor for two-sided confidence interval 0.95 with 10 measurements


Results:

https://en.wikipedia	.org/wiki/Student%	27s_t-distribution			
Quad	Shoe sole		Quad	<u>Mikrotrack</u>	
Scan-ID	Deviation [mm]	Reference ID	Scan-ID	Deviation [mm]	Referen
1941	0.076	1951	1412	0.045	141
1942	0.078	1951	1413	0.047	141
1943	0.078	1951	1414	0.046	141
1944	0.075	1951	1415	0.045	141
1945	0.078	1951	1416	0.047	141
1946	0.080	1951	1417	0.046	141
1947	0.077	1951	1418	0.046	141
1948	0.080	1951	1419	0.046	141
1949	0.081	1951	1420	0.047	141
1950	0.077	1951	1421	0.048	141
Accuracy PE form MEAN [mm]	0.078		Accuracy PE form MEAN [mm]	0.046	
Repeatibility PE form UNC [mm]	0.004		Repeatibility PE form UNC [mm]	0.002	
Accuracy PE form BEST [mm]	0.075		Accuracy PE form BEST [mm]	0.045	
Accuracy PE form WORST [mm]	0.081		Accuracy PE form WORST [mm]	0.048	
Repeatibility PE form RANGE [mm]	0.006		Repeatibility PE form RANGE [mm]	0.003	

Test reference:

B 0.06 0.04 0.02 0.00

- LED brightness optimal for specimen material
- Scan mode Hand
- External light <10,000 lux (indoor)
- Scans with quadpod can be performed in another stationary scan situation, e.g. with 3D-Scanner on table
- Specimen in center of FOW, at NWD, Scanner in perpendicular scan orientation

- Not move object during procedure

Test reference: Test procedure: 3DFFTI_TC_5aH

1. Reference scans: Quadpod, center of FOV, NWD, perpendicular scan orientation

- 2. 10 handheld scans by one person in scan mode Hand
- Repeat for shoe sole and Mikrotrack impression

Geomagic Quality 12 evaluation chain:

- Manual pre-registration with 3 points
- BestFit Registration

- 3D comparison (max. error 0.5 mm, critical angle 180°, 3D deviation) -> export deviation table (only deviation values)

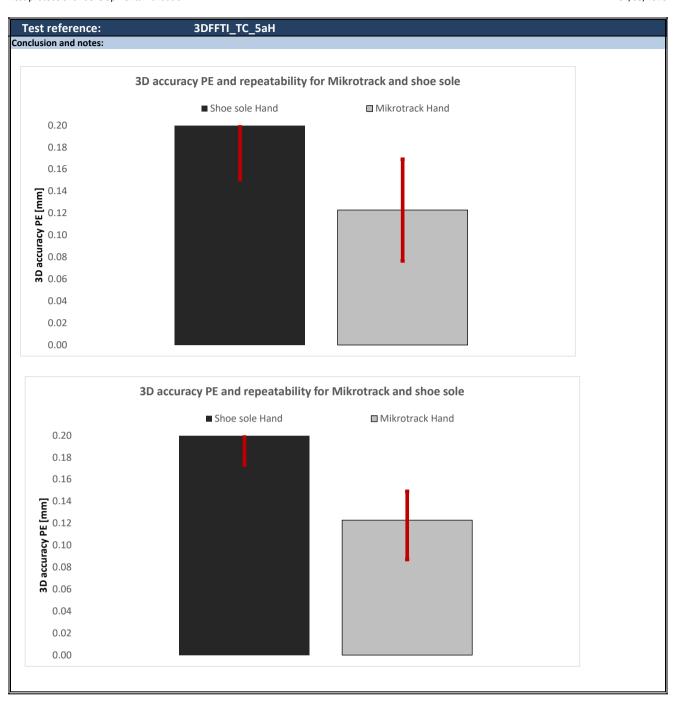
Expected results:

- Be aware that no deformations of the object itself are evaluated

- For Mikrotrack be aware that the specimen is not (too much) damaged

- Removel of outlier is necessary, especially for the handheld scans, because depending on the user the scans may contain slightly different parts of the specimen

- 3D accuracy probing error = Mean value of average distances


- Repeatability 3D accuracy probing error = Measurement uncertainties / standard deviation of average distances

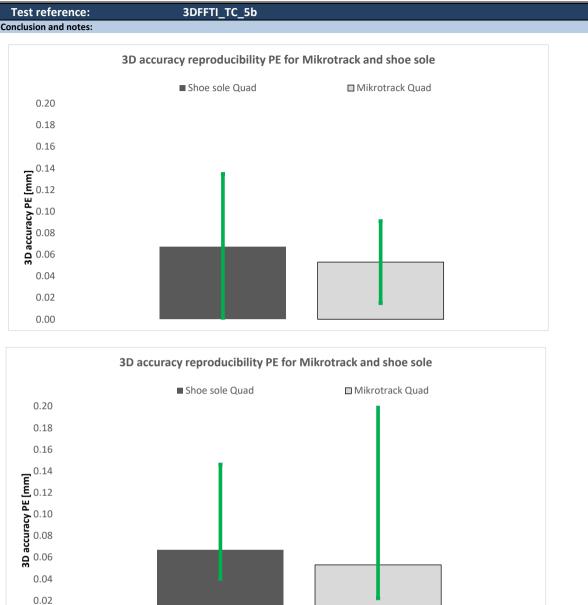
Results:

R

2.228 Student-factor for two-sided confidence interval 0.95 with 10 measurements
https://en.wikipedia.org/wiki/Student%27s_t-distribution

Hand	Shoe sole		Hand	<u>Mikrotrack</u>	
Scan-ID	Deviation [mm]	Reference ID	Scan-ID	Deviation [mm]	Reference
1400	0.204	1398	1422	0.137	1411
1401	0.190	1398	1423	0.149	1411
1402	0.173	1398	1424	0.097	1411
1403	0.230	1398	1425	0.117	1411
1404	0.228	1398	1426	0.139	1411
1405	0.198	1398	1427	0.112	1411
1406	0.178	1398	1428	0.134	1411
1407	0.194	1398	1429	0.143	1411
1408	0.176	1398	1430	0.087	1411
1409	0.227	1398	1431	0.113	1411
Accuracy PE form MEAN [m	<i>m]</i> 0.200		Accuracy PE form MEAN [mm]	0.123	
Repeatibility PE form UNC [m	<i>m</i>] 0.049		Repeatibility PE form UNC [mm]	0.046	
Accuracy PE form BEST [m	m] 0.173		Accuracy PE form BEST [mm]	0.087	
Accuracy PE form WORST [m	<i>m</i>] 0.230		Accuracy PE form WORST [mm]	0.149	
Repeatibility PE form RANGE [m	m] 0.057		Repeatibility PE form RANGE [mm]	0.062	

Test reference: 3DFFTI_TC_5b Test name: Reproducibility of 3D accuracy in terms of probing error Location: varying Date: Tested requirements: Reproducibility of 3D accuracy in terms of probing error, scan mode Quad	
Test name: in terms of probing error Location: varying Date:	
Test name: in terms of probing error Location: varying Date:	
Tested requirements: Reproducibility of 3D accuracy in terms of probing error, scan mode Quad	varying
Test set-up:	
- Reference shoe sole / MikroTrack impression	
Test assumptions, conditions & constraints:	
- NWD - Nominal working distance = 455 mm	
- FOV - Field of view (325 x 200 mm²)	
- Exposure step 1	
- LED brightness optimal for specimen material	
- Scan mode Quad	
- External light <10,000 lux (indoor)	
- Standard parameters: center FOV, NWD, perpendicular orientation, vertical rotation, <10.000 lx external light, 20-25°C	
- Scans are made in cooperation with EETG at different locations and each EETG member with different device	
- <u>Not</u> move object during procedure	
Test procedure:	
1. Reference scan: Quadpod, center of FOV, NWD, perpendicular scan orientation	
2. 1 scan per user in scan mode Quad of shoe sole (sole are typically scanned calmly in the office)	
3. 1 scan per user in scan mode Quad of Mikrotrack	
Geomagic evaluation chain:	
- Manual pre-registration with 3 points	
- BestFit Registration	
- 3D comparison (max. error 0.5 mm, critical angle 180°, 3D deviation) -> export deviation table (only deviation values)	
 Remove 0,3% of largest outliers (VDI conform) -> average deviation 	
Expected results:	
- Be aware that no deformations of the object itself are evaluated	
- For MikroTrack be aware that the specimen is not (too much) damaged	
- Removel of outlier is necessary, especially for the handheld scans, because depending on the user the scans may contain slightly di	ifferent
parts of the specimen (in Geomagic limit max. deviation to 0.5 mm)	
- Reproducibility 3D accuracy probing error = Standard deviation between repeated scans	

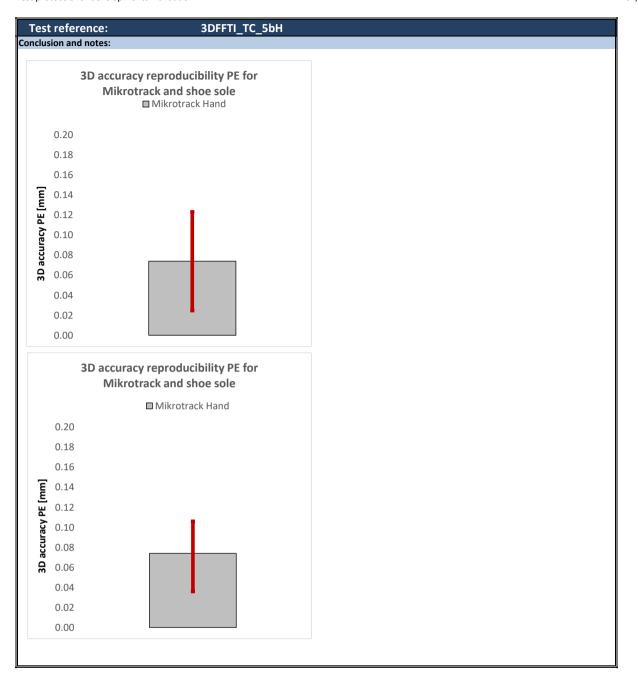

Test reference: Results: 3DFFTI_TC_5b

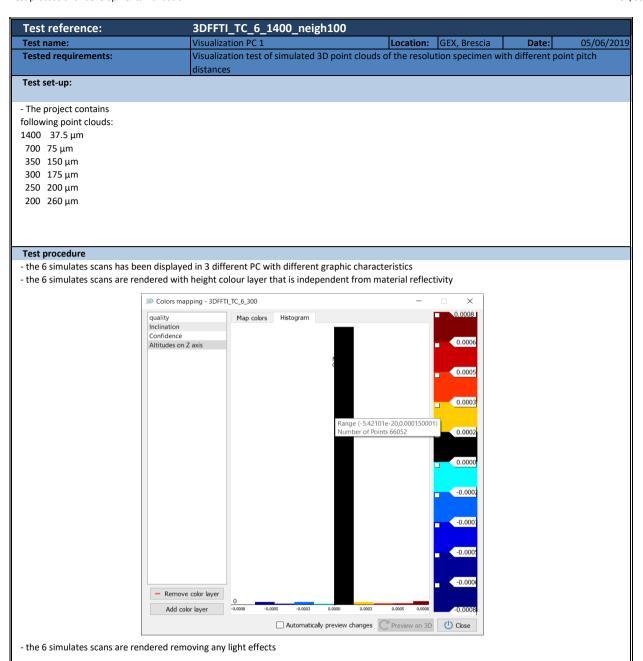
2.228 Student-factor for confidence interval 0.95 with **10** measurements <u>https://en.wikipedia.org/wiki/Student%27s_t-distribution</u>

<u>Mikrotrack</u>		Settings		Accuracy Qu	ad [mm]
Scan-ID	User-ID	Device	Mode	Deviation [mm]	Reference-ID
746	IOF1	006	Quad	0.035	745
826	YHP1	006	Quad	0.048	822
838	YHP2	006	Quad	0.049	826
851	YHP3	006	Quad	0.057	838
96	LKASA1	007	Quad	0.039	129
110	LKASA2	007	Quad	0.037	129
123	LKASA3	007	Quad	0.039	129
66	LKAMV1	008	Quad	0.084	64
87	LKAMV2	008	Quad	0.082	66
88	LKAMV3	008	Quad	0.051	66
731	CAR1	009	Quad	0.062	732
		Accuracy P	E form MEAN [mm]	0.053	
		Reproducibility	PE form UNC [mm]	0.038	
		Accuracy	PE form BEST [mm]	0.035	
		Accuracy PE	form WORST [mm]	0.084	
	Re	producibility Pl	E form RANGE [mm]	0.049	

Shoe sole		Settings		Accuracy Qu	ad [mm]
Scan-ID	User-ID	Device	Mode	Deviation [mm]	Reference-ID
748	IOF1	006	Quad	0.040	747
836	YHP1	006	Quad	0.048	824
849	YHP2	006	Quad	0.146	824
861	YHP3	006	Quad	0.048	862
131	LKASA1	007	Quad	0.050	130
134	LKASA2	007	Quad	0.096	130
135	LKASA3	007	Quad	0.050	130
102	LKAMV1	008	Quad	0.070	99
101	LKAMV2	008	Quad	0.061	99
100	LKAMV3	008	Quad	0.058	99
723	CAR1	009	Quad	0.070	722
		Acc	uracy PE form [mm]	0.067	
		Reproduc	ibility PE form [mm]	0.068	
		Accuracy	PE form BEST [mm]	0.040	
		Accuracy Pl	form WORST [mm]	0.146	
	Re	producibility P	E form RANGE [mm]	0.106	

0.00

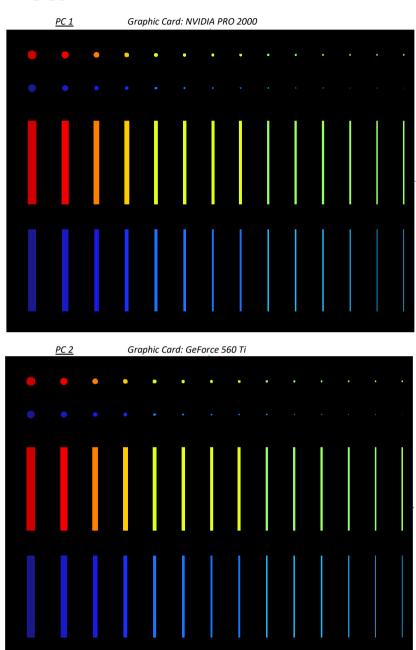

Toot weferences					
Test reference:	3DFFTI_TC_5bH				
Test name:	Reproducibility of 3D accuracy in terms of probing error - influence of scan mode	Location:	varying	Date:	varying
Tested requirements:	Reproducibility of 3D accuracy i	n terms of prob	bing error, scan mode l	Hand	
Test set-up:					
- Reference shoe sole / MikroTrack	mpression				
Test assumptions, conditions & co	nstraints:				
- NWD - Nominal working distance =	= 455 mm				
- FOV - Field of view (325 x 200 mm	2)				
- Exposure step 1					
- LED brightness optimal for specime	en material				
- Scan mode Hand					
 External light <10,000 lux (indoor) 					
	NWD, perpendicular orientation, verti		•	20-25°C	
	h EETG at different locations and each	EETG member	with different device		
 - <u>Not</u> move object during procedure 					
Test procedure:					
-	of FOV, NWD, perpendicular scan orie				
2. 1 scan per user in scan mode Han	d of Mikrotrack (traces are typically sc	anned quick un	der pressure at crime	scenes)	
Geomagic evaluation chain:					
 Manual pre-registration with 	3 points				
- BestFit Registration					
	5 mm, critical angle 180°, 3D deviation) -> export devi	ation table (only devia	tion values)	
- Remove 0,3% of largest outlie	ers (VDI conform) -> average deviation				
Expected results:					
- Be aware that no deformations of	•				
	specimen is not (too much) damaged				
	pecially for the handheld scans, becau	se depending o	n the user the scans m	ay contain slightly d	ifferent
parts of the specimen (in Geomagic	limit max. deviation to 0.5 mm)				
Poproducibility 2D accuracy probi	a orror - Standard doviation between	ropostod coso			
- Reproducibility 3D accuracy probin	ng error = Standard deviation between	repeated scans			


Test reference: Results:

3DFFTI_TC_5bH

2.228 Student-factor for confidence interval 0.95 with **10** measurements <u>https://en.wikipedia.org/wiki/Student%27s_t-distribution</u>

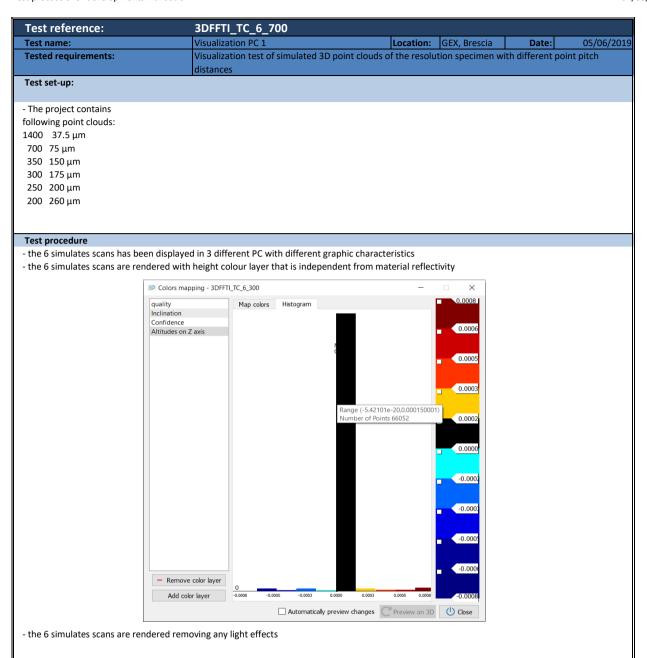
<u>Mikrotrack</u>		Settings		Accuracy Hand [mn	n]
Scan-ID	User-ID	Device	Mode	Deviation [mm]	Reference-ID
757	IOF1	006	Hand	0.052	745
831	YHP1	006	Hand	0.063	826
843	YHP2	006	Hand	0.070	838
856	YHP3	006	Hand	0.102	851
97	LKASA1	007	Hand	0.063	129
111	LKASA2	007	Hand	0.061	129
124	LKASA3	007	Hand	0.036	129
75	LKAMV1	008	Hand	0.098	66
76	LKAMV2	008	Hand	0.106	66
98	LKAMV3	008	Hand	0.086	88
725	CAR1	009	Hand	0.077	732
		Acci	uracy PE form [mm]	0.074	
		Reproduci	ibility PE form [mm]	0.049	
		Accuracy	PE form BEST [mm]	0.036	
		Accuracy PE	form WORST [mm]	0.106	
	Re	producibility PE	form RANGE [mm]	0.070	

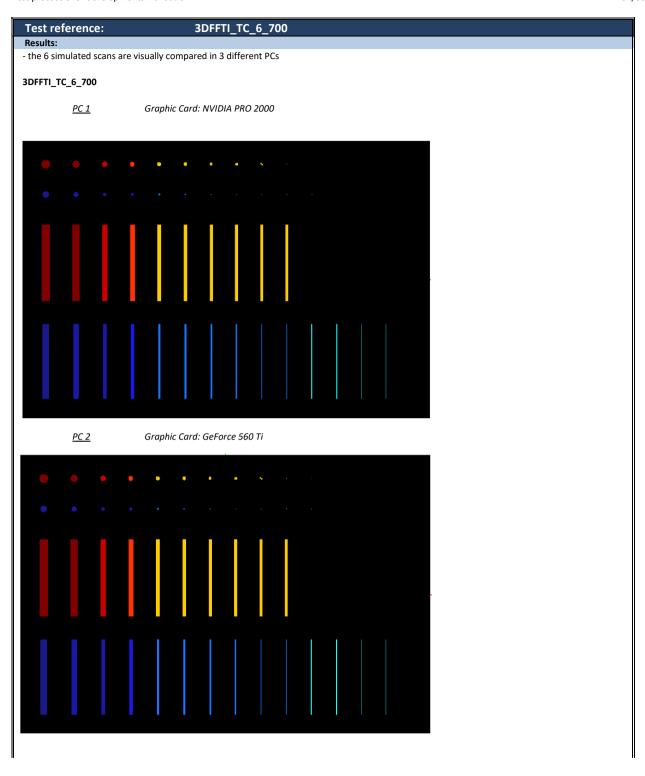


Test reference: Results: 3DFFTI_TC_6_1400_neigh100

- the 6 simulated scans are visually compared in 3 different PCs

3DFFTI_TC_6_1400

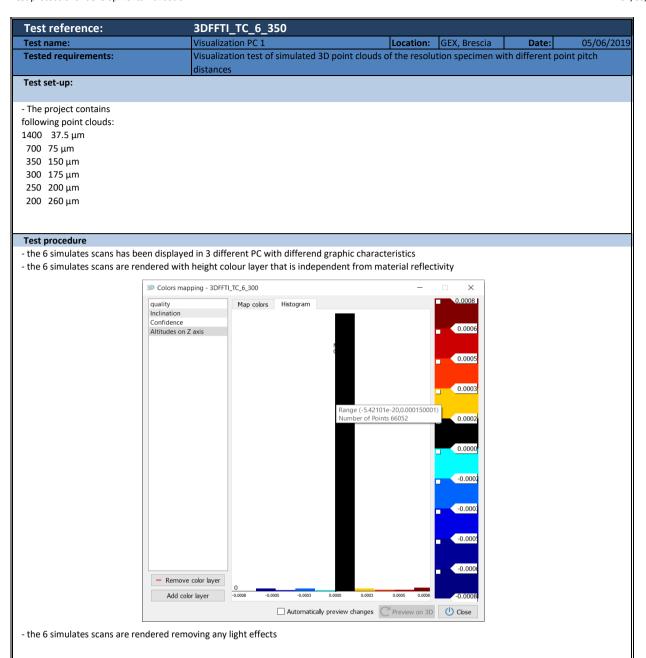


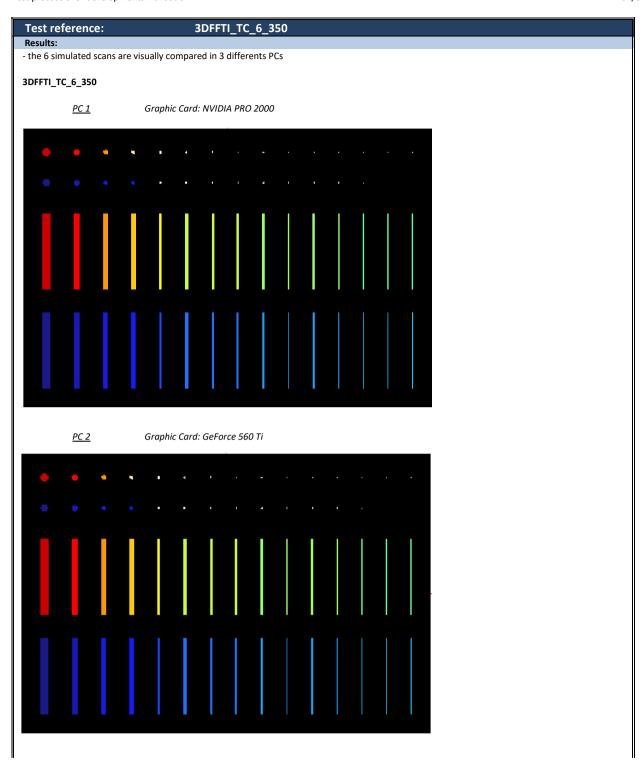

 Test reference:
 3DFFTI_TC_6_1400_neigh100

 PC3
 Graphic Card: NVIDIA Quadro M2000M

 Image: Conclusion and notes:
 Image: Conclusion and notes:

- no significant differences between different PC in the display of the same 3D clouds

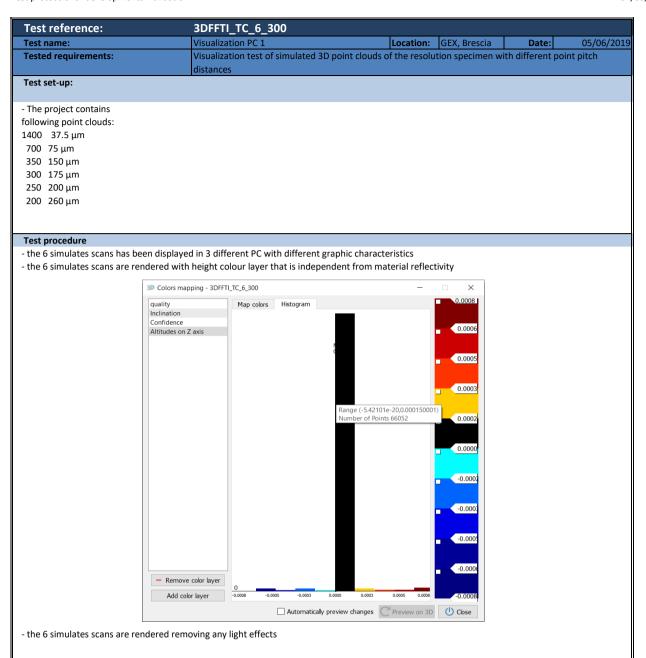

 Test reference:
 3DFFTI_TC_6_700

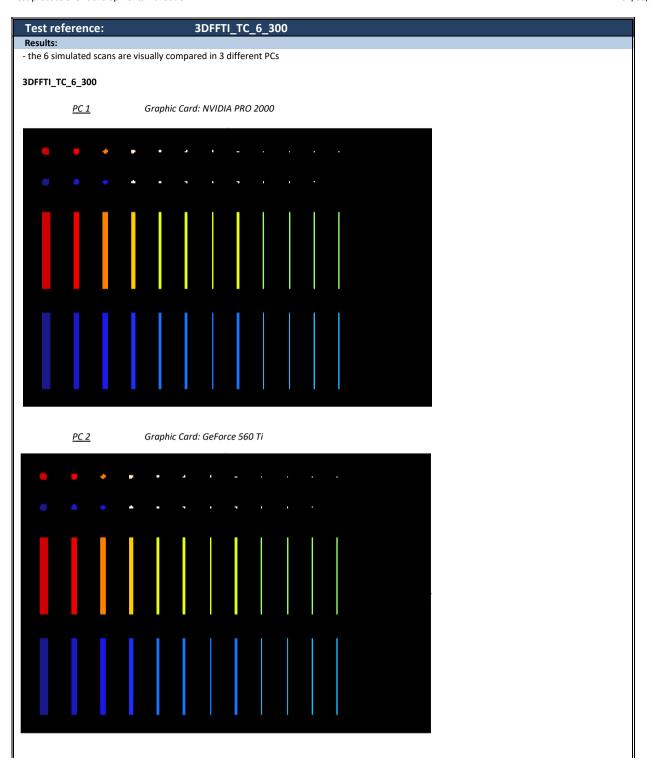

 PC3
 Graphic Card: Quadro M2000M

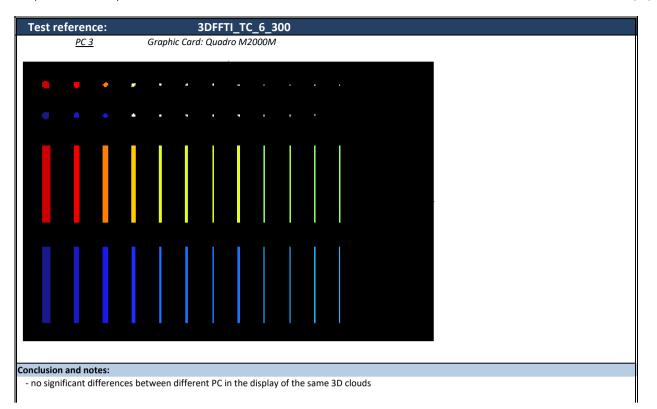
 O
 Image: Conclusion and notes:

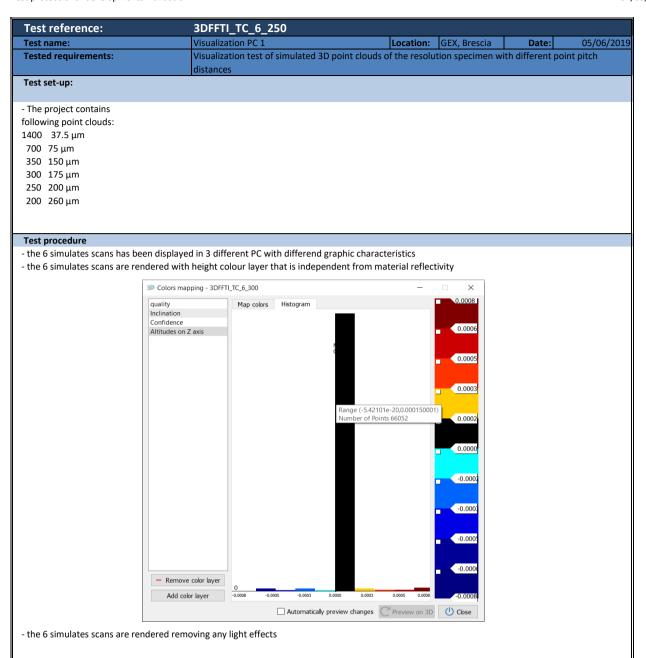
 Image: Image: Conclusion and notes:
 Image: Image: Conclusion and notes:

 Image: Image:

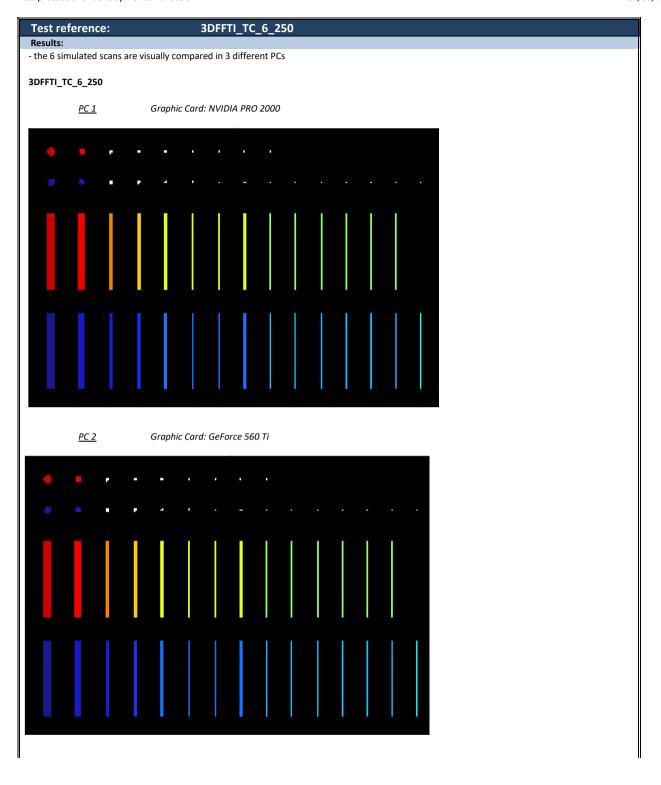

 Test reference:
 3DFFTI_TC_6_350

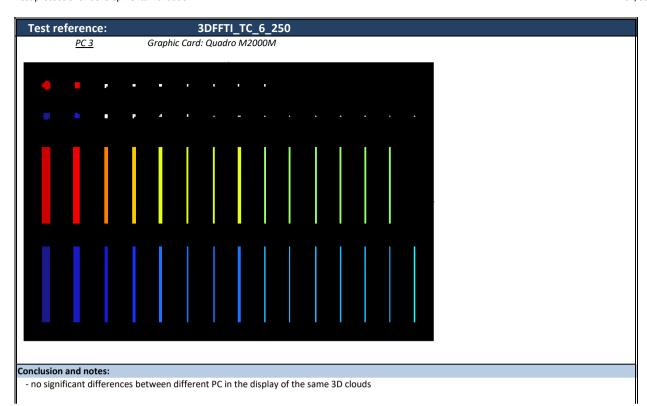

 PC3
 Graphic Card: Quadro M2000M

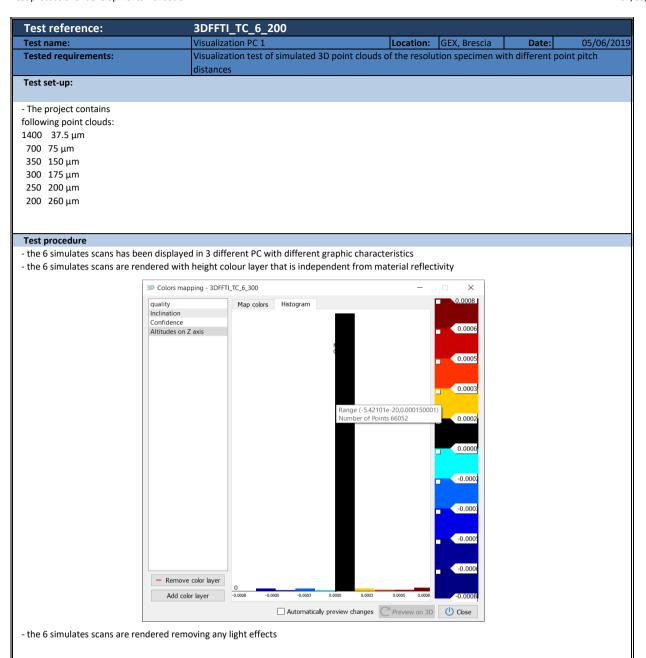

 Image: Conclusion and notes:

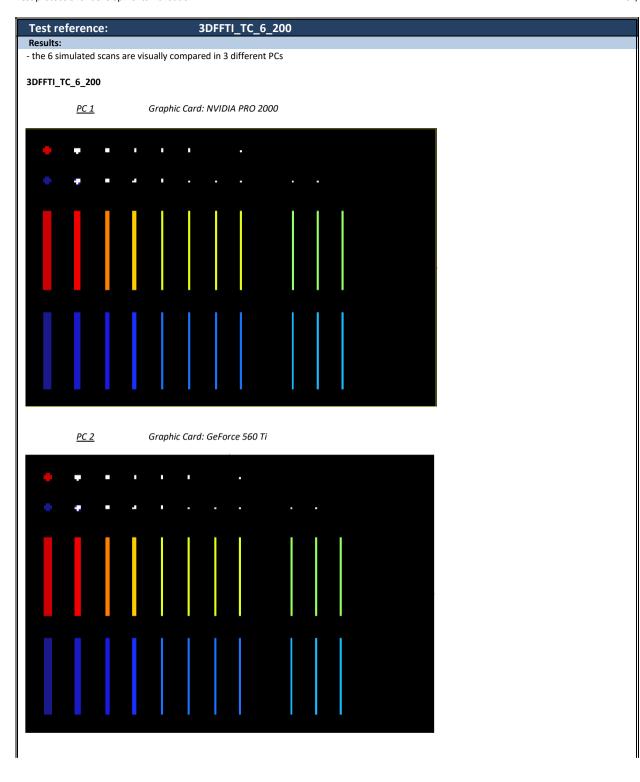

- no significant differences between different PC in the display of the same 3D clouds

Use, duplication or disclosure of data contained on this sheet is subject to the restrictions on the front sheet of this document.

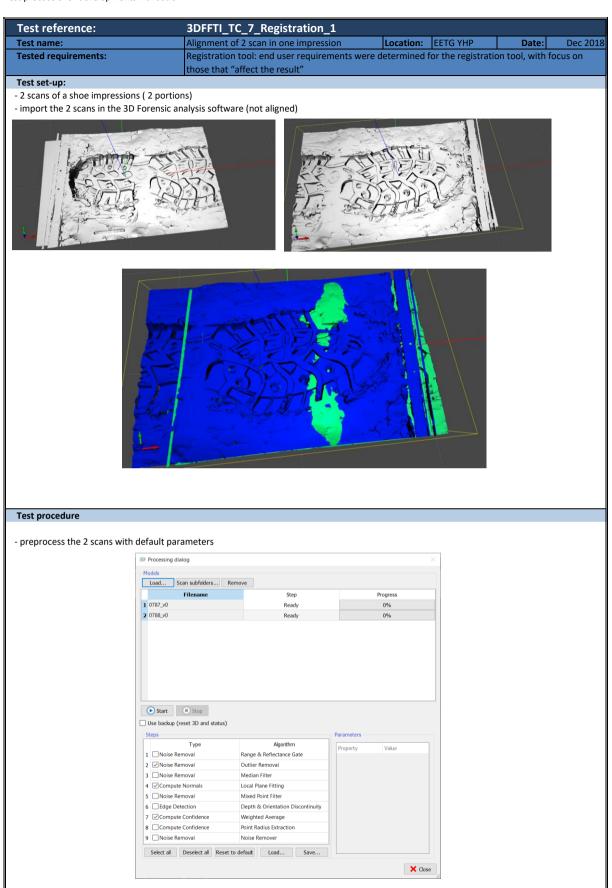








Protocol: 3DFFTI_Developmental_Validation Rev. 0_28 04/03/2020



Test reference:	3DFFTI_TC_6_200
<u>PC 3</u>	Graphic Card: Quadro M2000M
•••	
onclusion and notes:	
	es between different PC in the display of the same 3D clouds
-	

Test reference: 3DFFTI_TC_7_Registration_1 - manual preregistration by selecting 3 common points -). ence grid Load p ving grid Load points... Save points... nce grid colorType Inclination · . Load mo 0 Apply transform Copy in dipboard to apply later Cancel Set moving grid Set reference grid Error 1 0.1294 mm 2 0.0906 mm 3 0.1026 mm Fixed Vertical Labe Labe 99.3370 20.6587 -7.2739 124.524 12.3039 2 2 3 3 -3.3138 9.0520 9.0920 30.3248 22 51.8104 -0.8464 5.4985 Low (> 1 m) Reference orientation is co Mean error: 0.1075 mm Compute X Close - ICP automatic registration 3 ICP Registration Drag and drop here the clouds to register Result Performing terative search of corresponding points, teration=68, mean error: 0.0421 mm Performing terative search of corresponding points, teration=69, mean error: 0.0420 mm Performing terative search of corresponding points, teration=70, mean error: 0.0419 mm Performing terative search of corresponding points, teration=71, mean error: 0.0418 mm Performing terative search of corresponding points, teration=73, mean error: 0.0418 mm Performing terative search of corresponding points, teration=74, mean error: 0.0418 mm Performing terative search of corresponding points, teration=74, mean 0787_v0 0788_v0 Movine I Registration nts, iteration=75, mean Mean registration error: 4.16272e-5 [m] nts, iteration=76, mean nts, iteration=77, mean Apply transform Copy in clipboard to apply later Cancel nts, iteration=78, mean error: 0.0416 mm Mean error [m] = 4.16272e-5 | Iteration: 78 | Used points = 20179 (40000) Matching histogram 400 350 250 200 150 100 50 0 Start from preregistration report Det ICP parameters 5e-05 0.0001 0.00015 Distance [m] 0.0002 ò

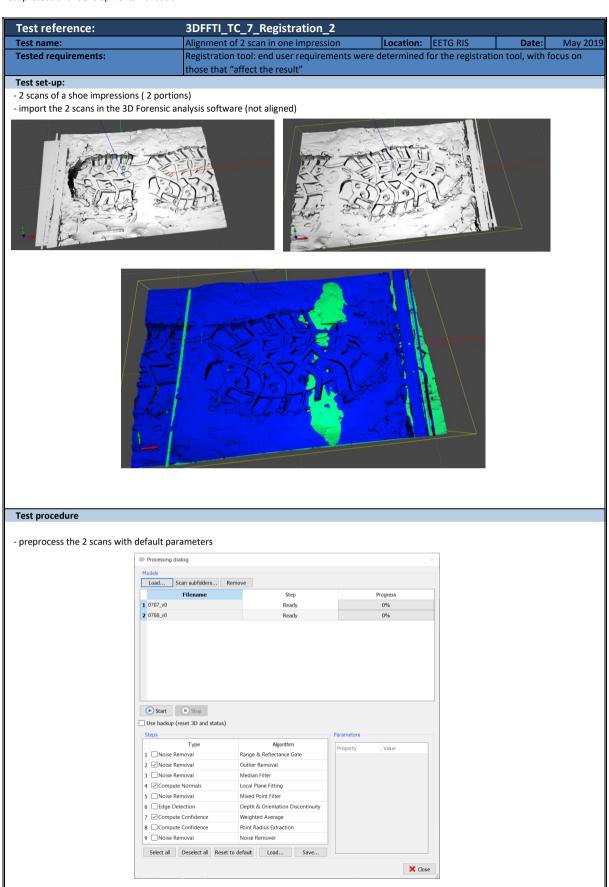
Start Stop

🗙 Close

	- Starting preregistration error (user interaction) 0.1075 mm	Test reference: 3	DFFTI_TC_7_Re	gistration_1	
		Results:			
- final registration error after ICP automatic fine registration 4,16 x 10 ⁻ mm	- final registration error after ICP automatic fine registration 4,16 x 10 mm				
		- final registration error after ICP automatic	ine registration	4,16 x 10 ²	mm

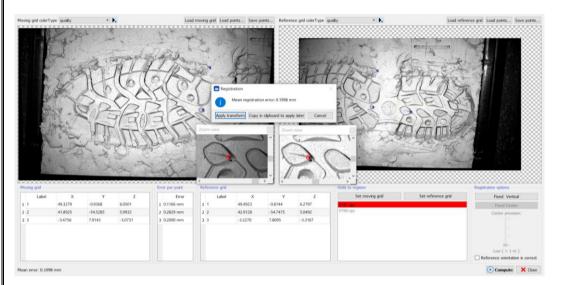
Conclusion and notes:

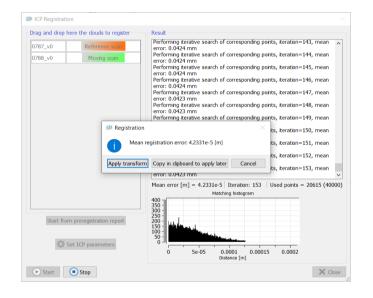
-The alignment of point clouds results in no visible transition border.


-The resistance to small variations in method parameters and environmental conditions (e.g. manual pre-alignment).

-Alignment is stable.

-Alignment is independent from user.

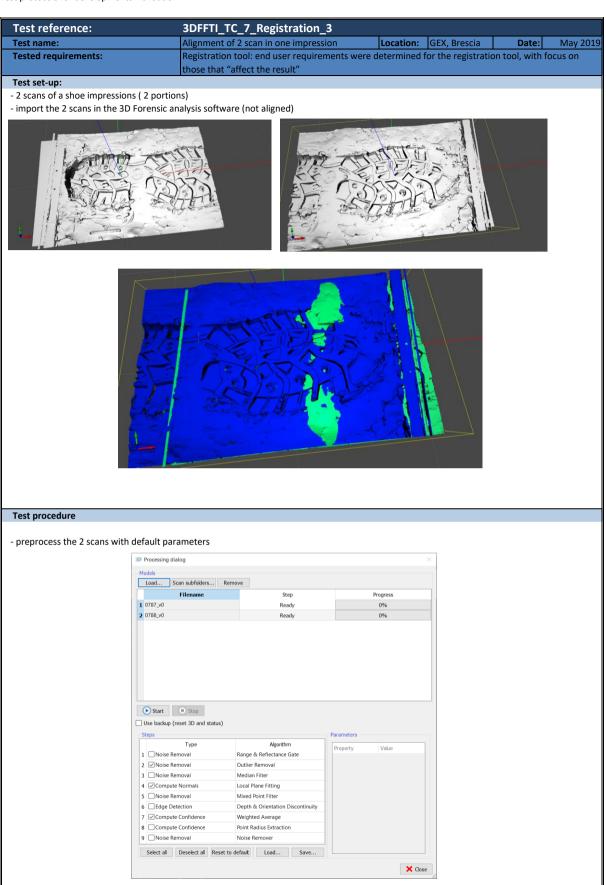

-The point clouds require low overlapping area.


-The resulting deviation of the alignment is logged. / Error resistance

3DFFTI_TC_7_Registration_2

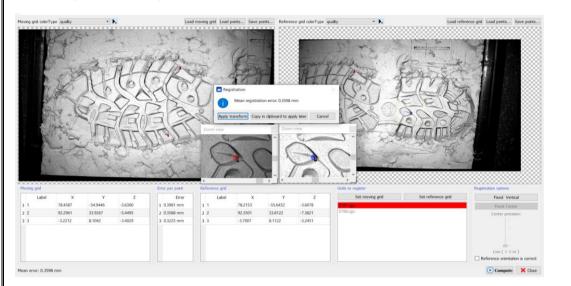
- manual preregistration by selecting 3 common points

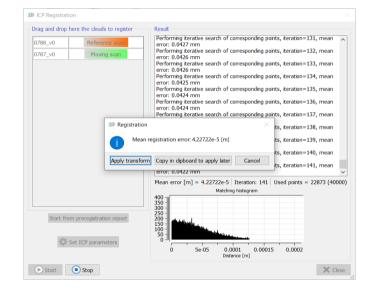
Results: - Starting preregistration error (user interaction) 0.1998 mm - final registration error after ICP automatic fine registration 4,23 × 10 ⁻² mm	- Starting preregistration error (user interaction) 0.1998 mm	Test reference: 3DFFTI_TC_7_R	egistration_2	
		Results:		
- final registration error after ICP automatic fine registration 4,23 x 10 ⁻² mm	- final registration error after ICP automatic fine registration $4,23 \times 10^{-2}$ mm	- Starting preregistration error (user interaction)	0.1998	mm
		- final registration error after ICP automatic fine registration	4,23 x 10 ⁻²	mm


-The alignment of point clouds results in no visible transition border.

-The resistance to small variations in method parameters and environmental conditions (e.g. manual pre-alignment).

-Alignment is stable.

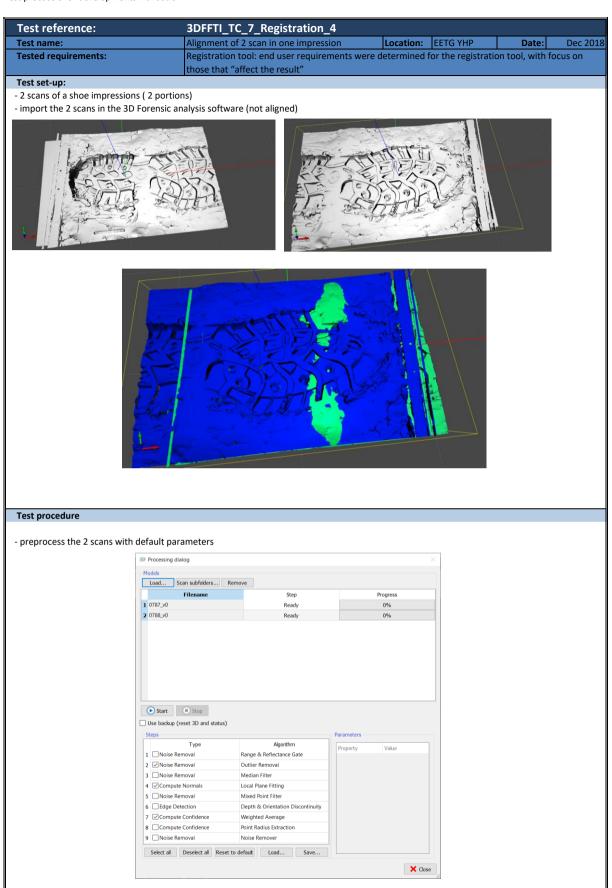

-Alignment is independent from user.


-The point clouds require low overlapping area.

3DFFTI_TC_7_Registration_3

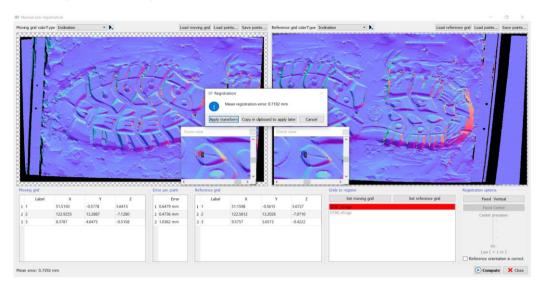
- manual preregistration by selecting 3 common points

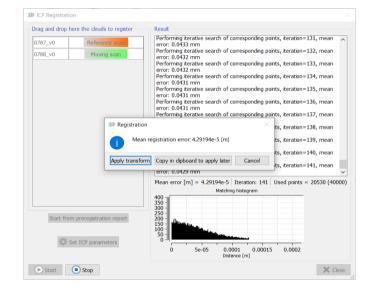
Test reference:	3DFFTI_TC_7_Re	gistration_3	
Results:			
 Starting preregistration final registration error a 	error (user interaction) fter ICP automatic fine registration	0.3598 4,22 x 10 ⁻²	mm mm


-The alignment of point clouds results in no visible transition border.

-The resistance to small variations in method parameters and environmental conditions (e.g. manual pre-alignment).

-Alignment is stable.

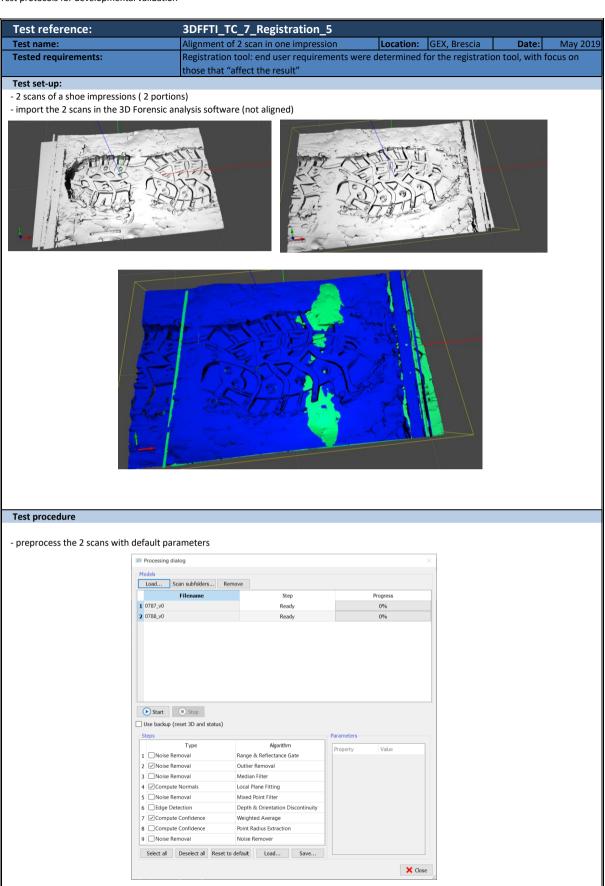

-Alignment is independent from user.


-The point clouds require low overlapping area.

3DFFTI_TC_7_Registration_4

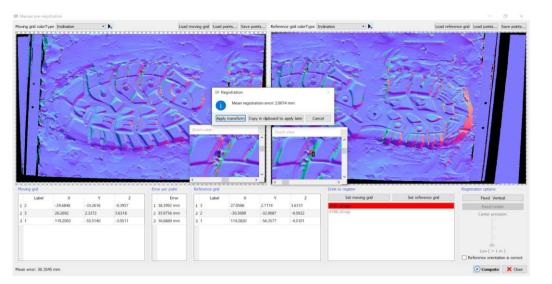
- manual preregistration by selecting 3 common points

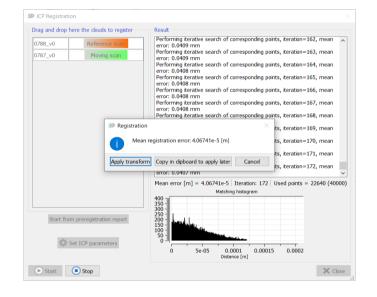
Test reference: 3DFFTI_	7_Registration_4	
Results:		
- Starting preregistration error (user interaction)	0.7192	mm
- final registration error after ICP automatic fine regi	on 4,29 x 10 ⁻²	mm


-The alignment of point clouds results in no visible transition border.

-The resistance to small variations in method parameters and environmental conditions (e.g. manual pre-alignment).

-Alignment is stable.

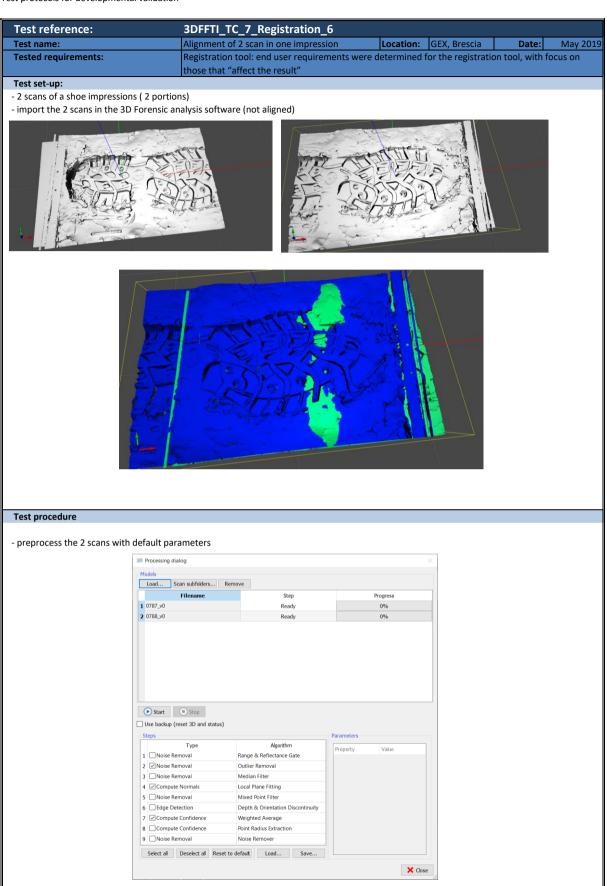

-Alignment is independent from user.


-The point clouds require low overlapping area.

3DFFTI_TC_7_Registration_5

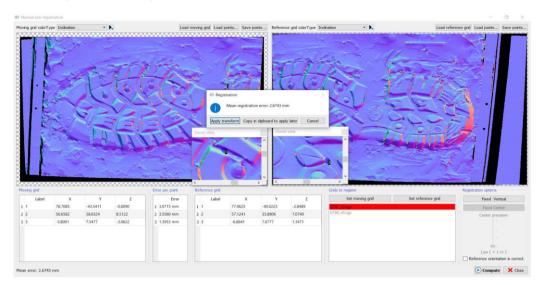
- manual preregistration by selecting 3 common points

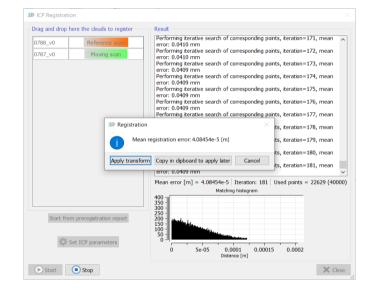
Results: - Starting preregistration error (user interaction) 2.074 mm - final registration error after ICP automatic fine registration 4,06x 10 ⁻² mm	Test reference: 3DFFTI_TC_7_	egistration_5	
	Results:		
- final registration error after ICP automatic fine registration 4,06x 10 ⁻² mm	- Starting preregistration error (user interaction)	2.074	mm
	- final registration error after ICP automatic fine registration	4,06x 10 ⁻²	mm


-The alignment of point clouds results in no visible transition border.

-The resistance to small variations in method parameters and environmental conditions (e.g. manual pre-alignment).

-Alignment is stable.

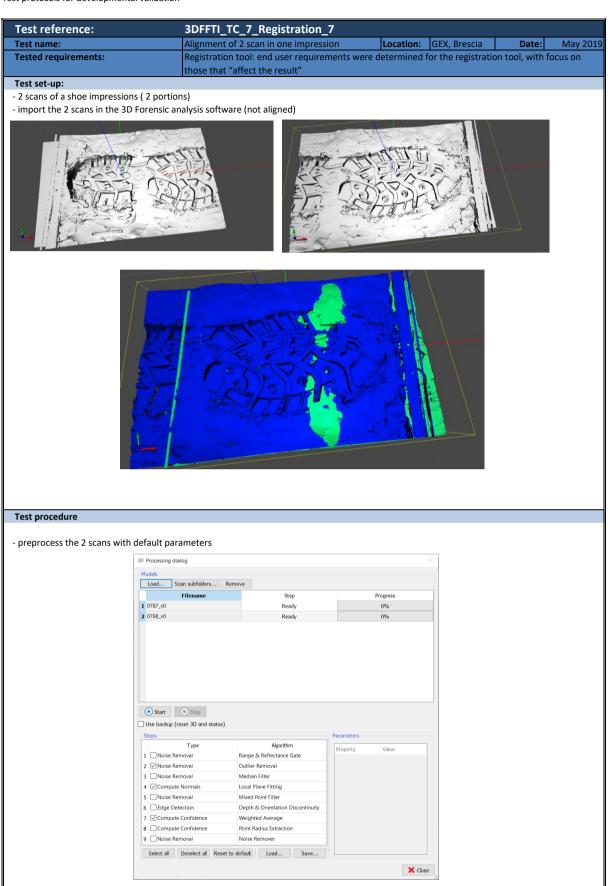

-Alignment is independent from user.


-The point clouds require low overlapping area.

3DFFTI_TC_7_Registration_6

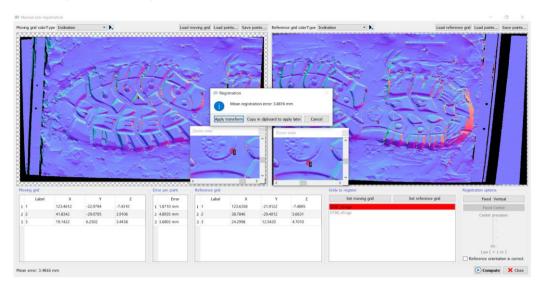
- manual preregistration by selecting 3 common points

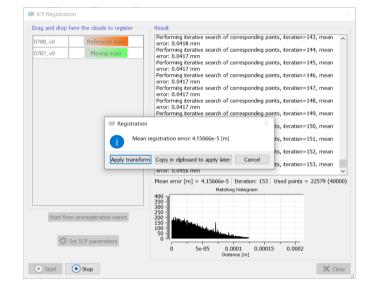
Test reference:	3DFFTI_TC_7_Re	gistration_6	
Results:			
- Starting preregistration error (user ir	iteraction)	2.674	mm
- final registration error after ICP automatic fine registration		4,08 x 10 ⁻²	mm


-The alignment of point clouds results in no visible transition border.

-The resistance to small variations in method parameters and environmental conditions (e.g. manual pre-alignment).

-Alignment is stable.

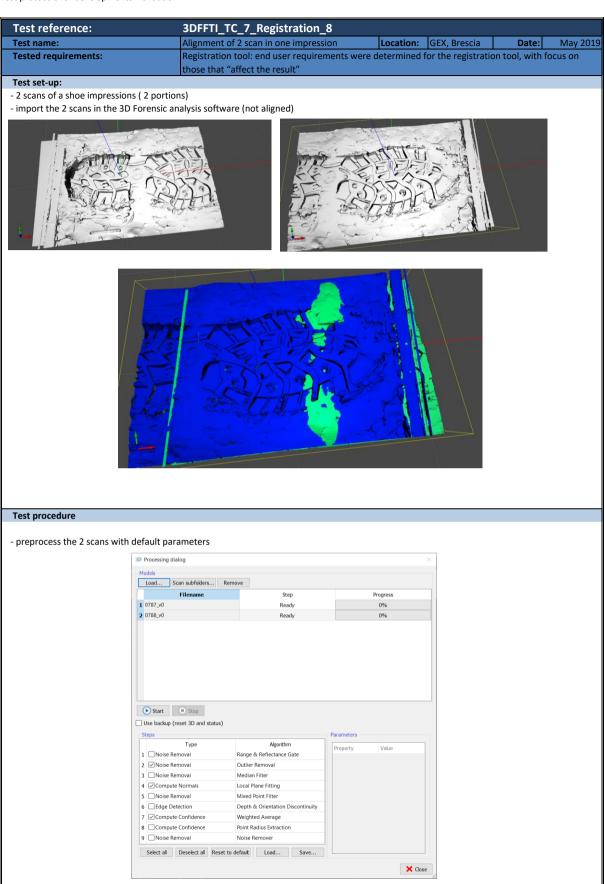

-Alignment is independent from user.


-The point clouds require low overlapping area.

3DFFTI_TC_7_Registration_7

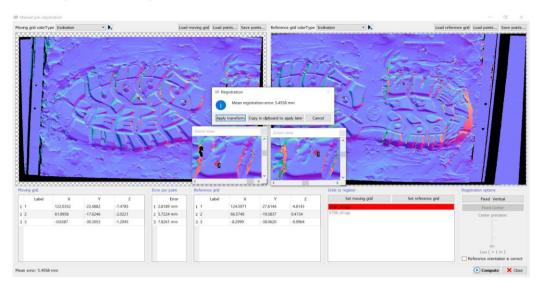
- manual preregistration by selecting 3 common points

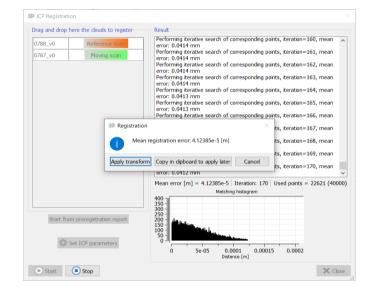
Results: - Starting preregistration error (user interaction) 3.481 mm - final registration error after ICP automatic fine registration 4,15 x 10 ⁻² mm	Test reference: 3DFFTI_TC_7_	Registration_7	nce: 3DFFTI_TC_7_Reg
	Results:		
- final registration error after ICP automatic fine registration 4,15 x 10 ⁻² mm	- Starting preregistration error (user interaction)	3.481	gistration error (user interaction)
	- final registration error after ICP automatic fine registration	4,15 x 10 ⁻²	on error after ICP automatic fine registration


-The alignment of point clouds results in no visible transition border.

-The resistance to small variations in method parameters and environmental conditions (e.g. manual pre-alignment).

-Alignment is stable.


-Alignment is independent from user.


-The point clouds require low overlapping area.

3DFFTI_TC_7_Registration_8

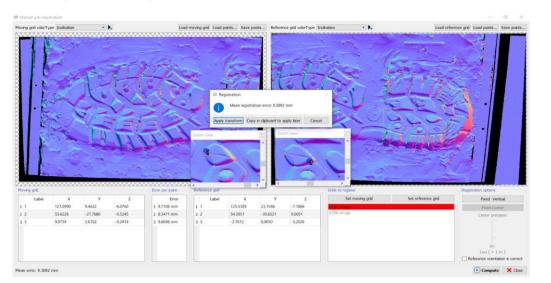
- manual preregistration by selecting 3 common points

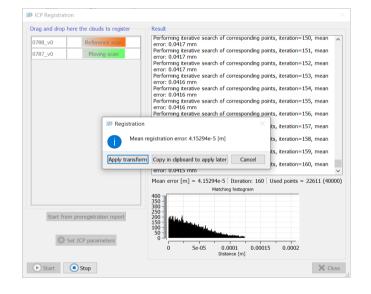
Results:	
- Starting preregistration error (user interaction) 5.455	mm
- final registration error after ICP automatic fine registration 4,12 x 10 ⁻²	mm


-The alignment of point clouds results in no visible transition border.

-The resistance to small variations in method parameters and environmental conditions (e.g. manual pre-alignment).

-Alignment is stable.

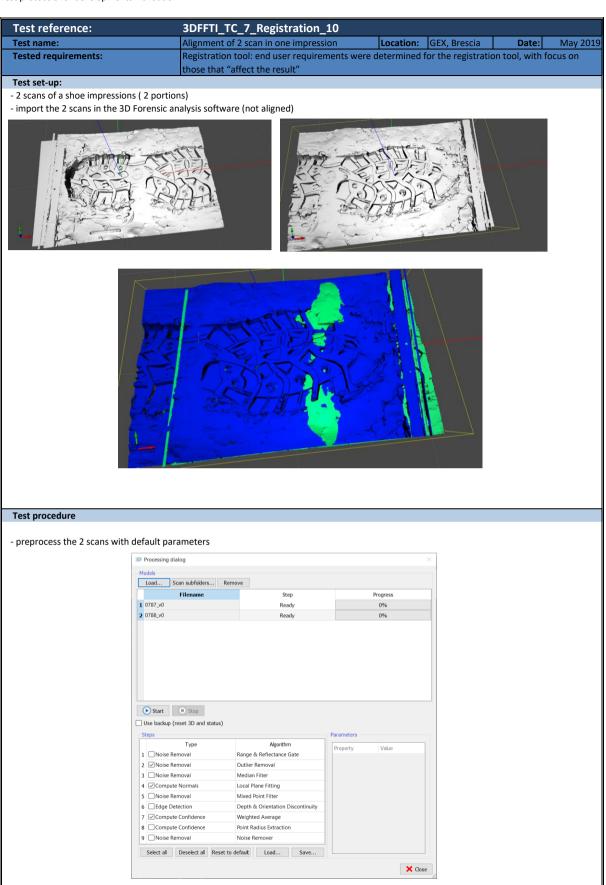

-Alignment is independent from user.


-The point clouds require low overlapping area.

3DFFTI_TC_7_Registration_9

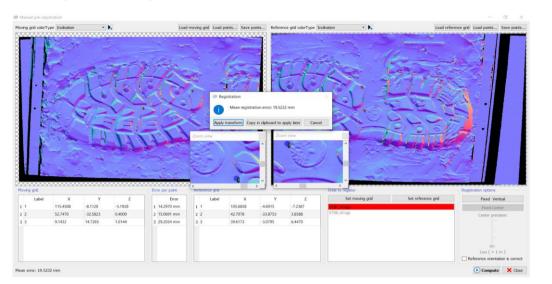
- manual preregistration by selecting 3 common points

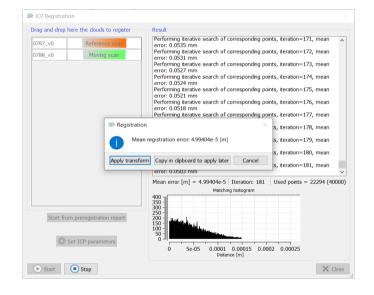
Results:
Results:
- Starting preregistration error (user interaction) 9.309 mm
- final registration error after ICP automatic fine registration $4,15 \times 10^{-2}$ mm


-The alignment of point clouds results in no visible transition border.

-The resistance to small variations in method parameters and environmental conditions (e.g. manual pre-alignment).

-Alignment is stable.


-Alignment is independent from user.


-The point clouds require low overlapping area.

3DFFTI_TC_7_Registration_10

- manual preregistration by selecting 3 common points

Results: Starting preregistration error (user interaction) 19.523 mm
Starting preregistration error (user interaction) 19.523 mm
final registration error after ICP automatic fine registration 4,99 x 10 ⁻² mm

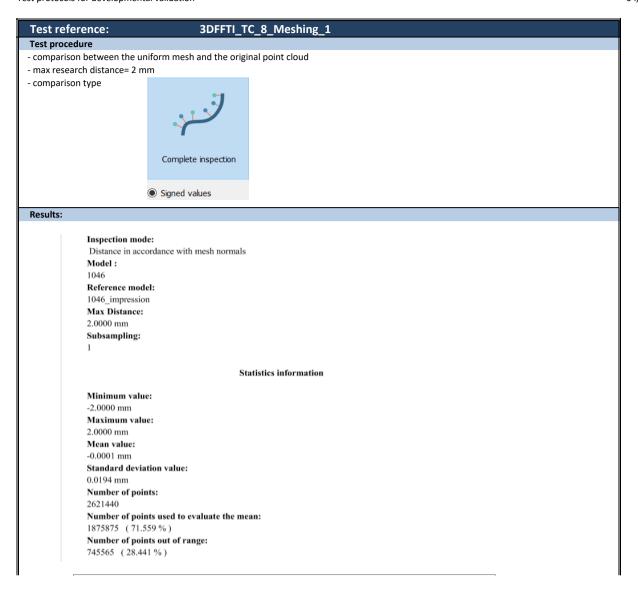
-The alignment of point clouds results in no visible transition border.

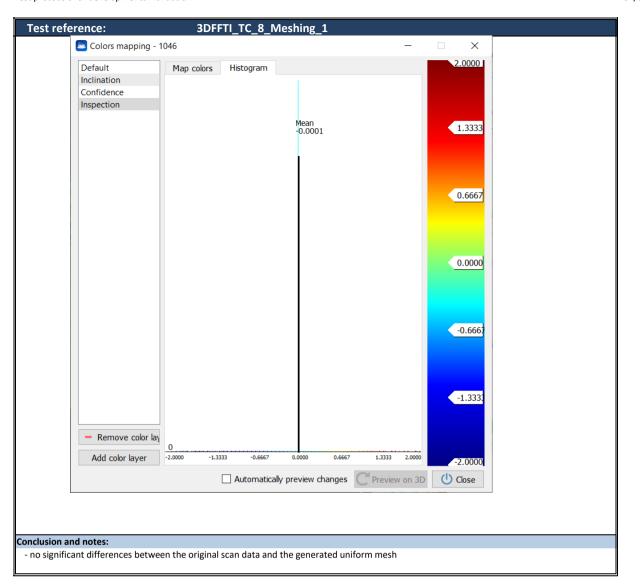
-The resistance to small variations in method parameters and environmental conditions (e.g. manual pre-alignment).

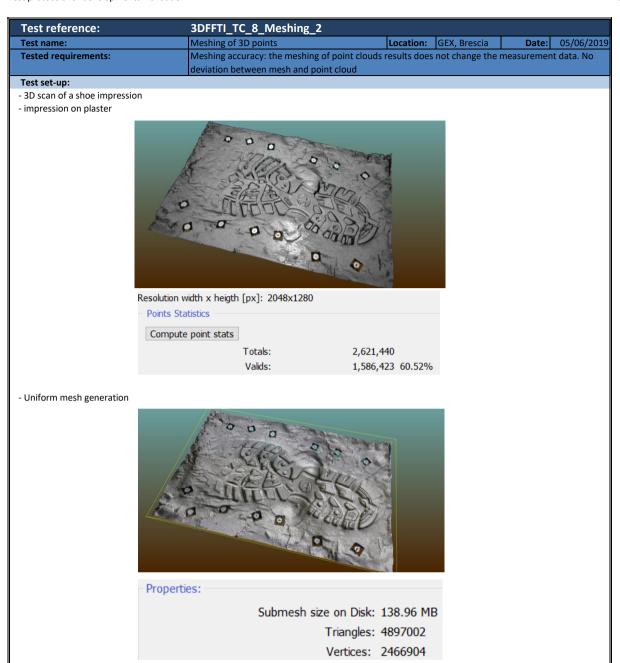
-Alignment is stable.

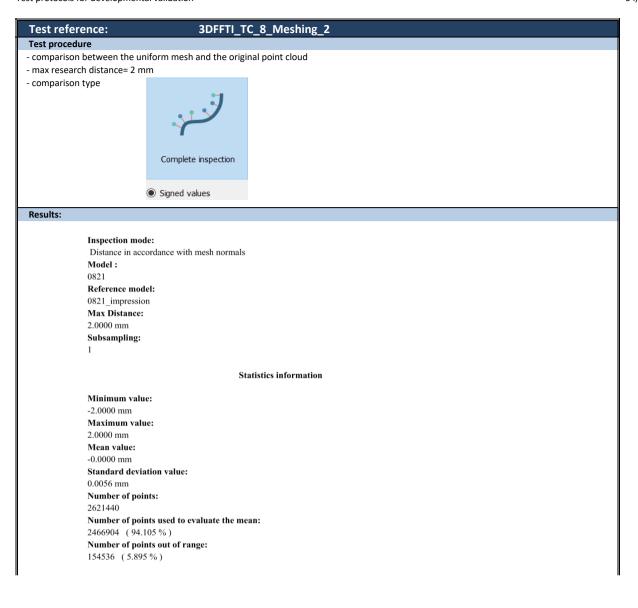
-Alignment is independent from user.

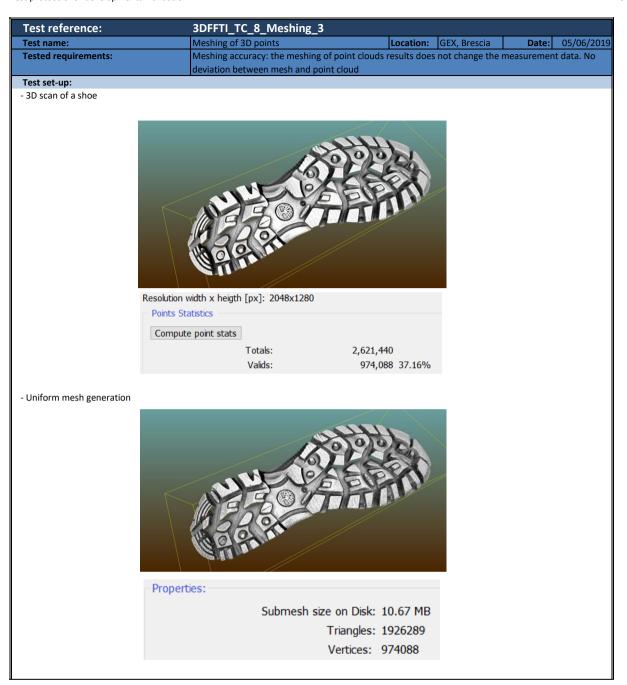
-The point clouds require low overlapping area.

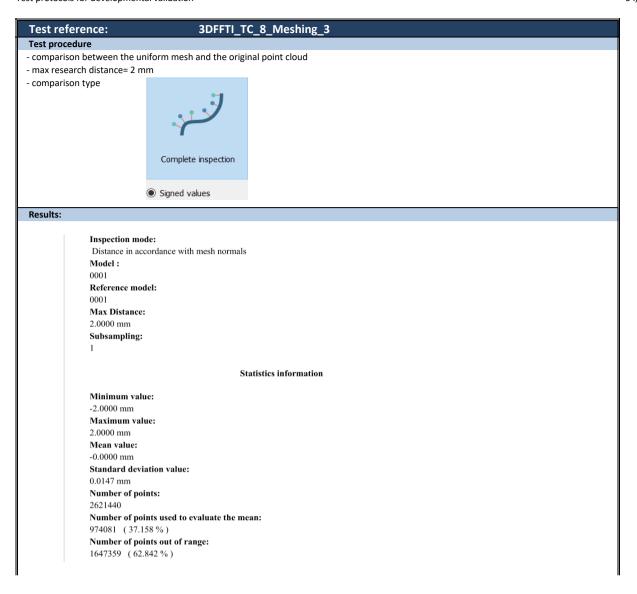

Results (3DFFTI_TC7_Registration_Results):

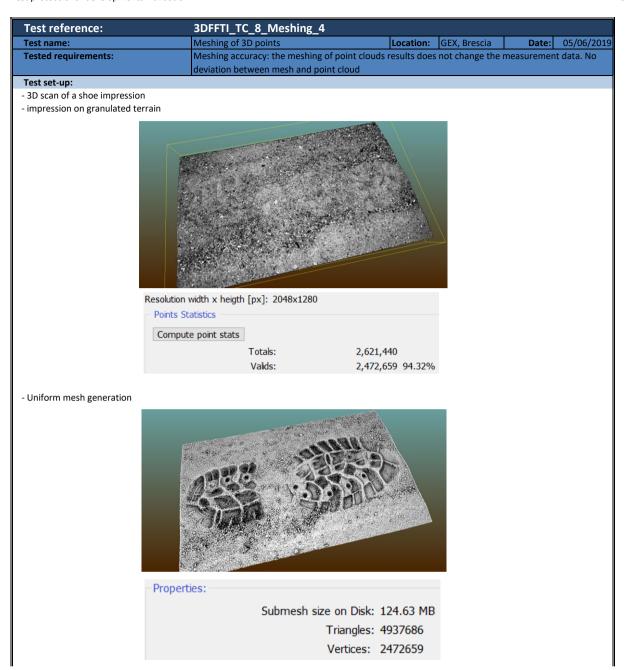

	TEST 1	TEST 2	TEST 3	TEST 4	TEST 5	TEST 6	TEST 7	TEST 8	TEST 9	TEST 10
- Starting preregistration error (user interaction) - mm	0.1075	0.1998	0.3598	0.7192	2.074	2.674	3.481	5.455	9.309	19.523
 final registration error after ICP automatic fine registration - mm 	4,16 x 10-2	4,23 x 10-2	4,22 x 10-2	4,29 x 10-2	4,06x 10-2	4,08 x 10-2	4,15 x 10-2	4,12 x 10-2	4,15 x 10-2	4,99 x 10-2
- reproducibility [TEST 1 TEST 4] mean registration error		4.23	x 10 ⁻²	mm						
- reproducibility [TEST 1 TEST 4] standard deviation of registration errors		0.05	x 10 ⁻²	mm						
- reproducibility [TEST 1 TEST 4] minimum deviation of registration errors		4.16	x 10 ⁻²	mm						
- reproducibility [TEST 1 TEST 4] maximum deviation of registration e	errors	4.29	x 10 ⁻²	mm						
- robustness [TEST 1 TEST 10] mean registration error		4.25	x 10 ⁻²	mm						
- robustness [TEST 1 TEST 10] standard deviation of registration error	rs	0.27	x 10 ⁻²	mm						
- robustness [TEST 1 TEST 10] minimum deviation of registration errors		4.06	x 10 ⁻²	mm						
- robustness [TEST 1 TEST 10] maximum deviation of registration error	ors	4.99	x 10 ⁻²	mm						
Conclusion and notes:										

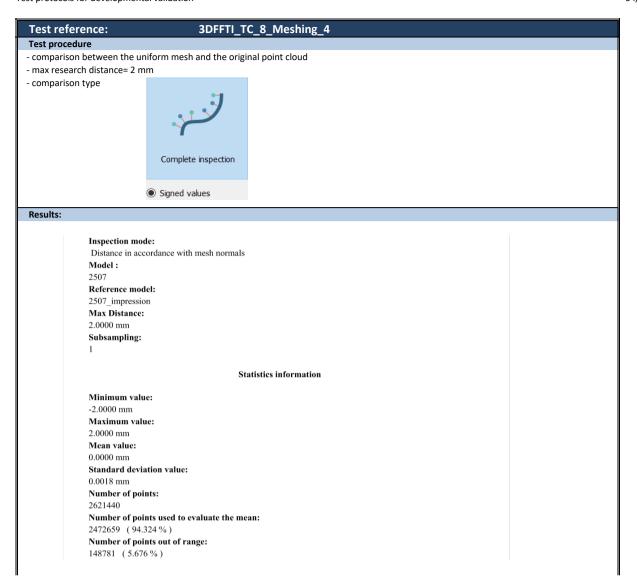

-the ICP registration is robust to the manual pre-registration error

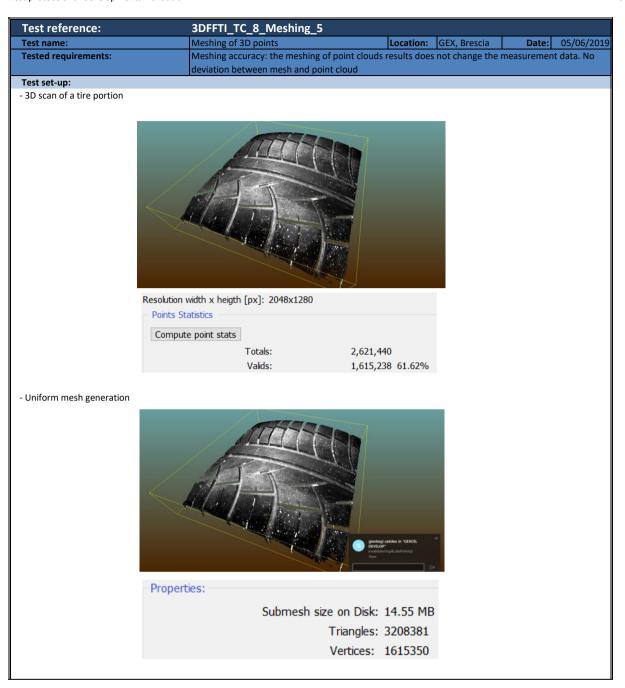

-for TEST 10 the pre-registration error is largely visible (see picture below) but nevertheless the fine ICP registration converges

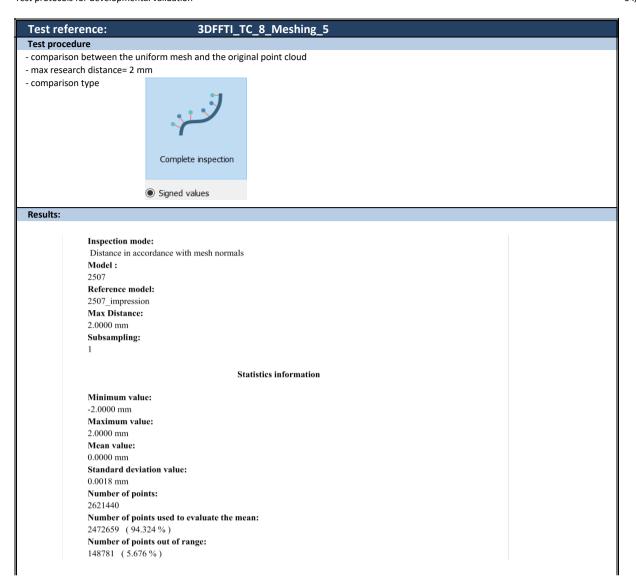


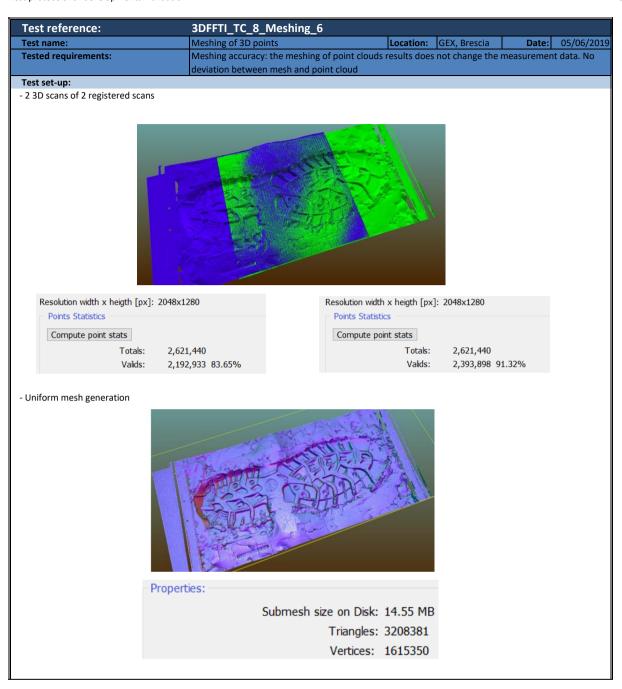


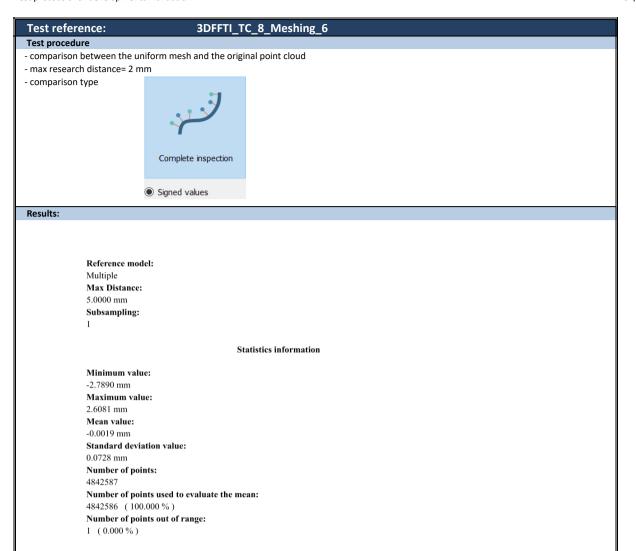


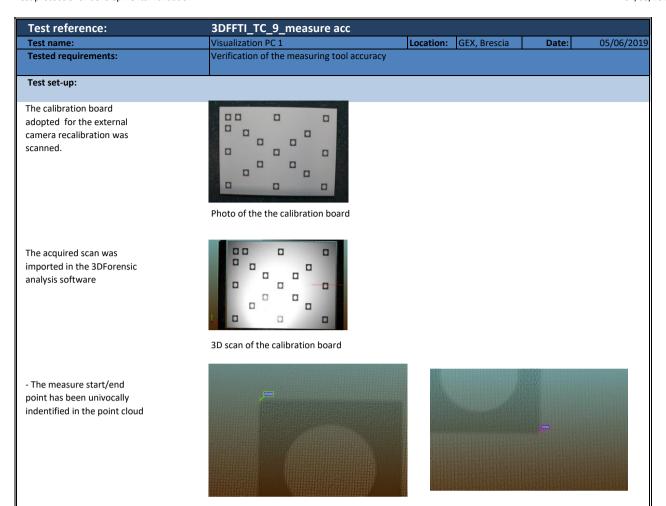

Test reference:	3DFFTI_TC_8_Meshing_2
Colors mapping - 0821	- 🗆 X
quality Inclination Confidence AmbientLight Inspection	Map colors Histogram
	Mean -0.0000
	0.6667
	0.0000
	-0.666
Remove color layer Add color layer	0 -2.0000 -1.3333 -0.6667 0.0000 0.6667 1.3333 2.0000 -2.0000
Aud color layer	Automatically preview changes Preview on 3D Ocean
Conclusion and notes:	
	the original scan data and the generated uniform mesh



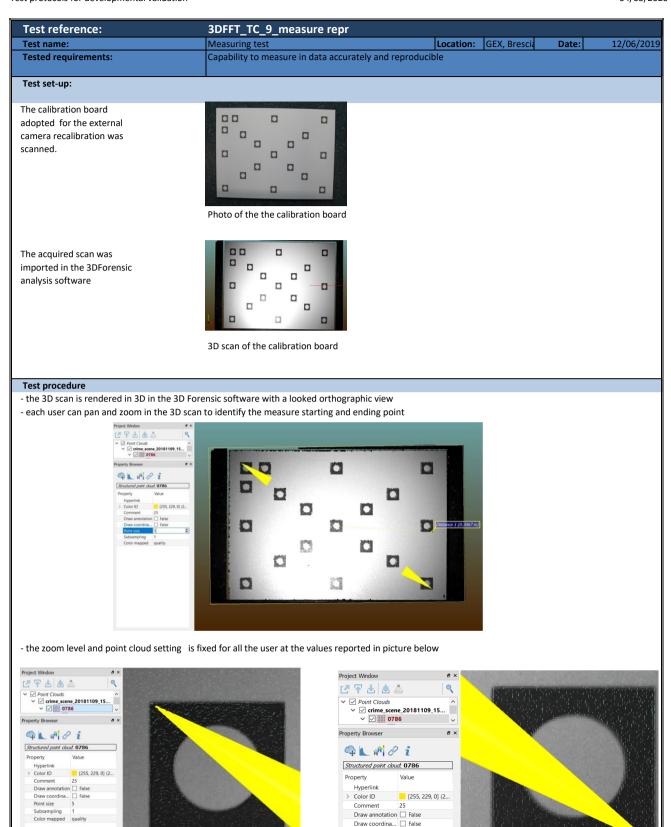

est reference:	3DFFTI_TC_8_Meshing_3
Scolors mapping - 0001	– – ×
quality Inclination	Map colors Histogram
Confidence	
AmbientLight	
Inspection	
	Mean -0.0000 1.3333
	0.6667
	0.0007
	0.0000
	-0.6667
	-1.333
 Remove color layer 	
Add color layer	0
	Automatically preview changes Preview on 3D
lusion and notes:	
significant differences between	the original scan data and the generated uniform mesh




Test reference:	3DFFTI_TC_8_Meshing_4
Colors mapping - 2507	- 🗆 X
Default AmbientLight Inspection	Map colors Histogram
	Mean 0.0000
	0.6667
	0.0000
	-0.6667
	-1.333
- Remove color layer	0
Add color layer	-2.0000 -1.3333 -0.6667 0.0000 0.6667 1.3333 2.0000 -2.0000
	Automatically preview changes Preview on 3D Oce
onclusion and notes:	he original scan data and the generated uniform mesh
no significant and chees between t	



Test reference:	3DFFTI_TC_8_Meshing_5
Colors mapping - 262	
Default	Map colors Histogram
Inclination	
Confidence	
Inspection	
	Mean -0.0000 1.3333
	-0.0000
	0.6667
	0.0000
	-0.666
	-0.000
	-1.333
 Remove color layer 	r
Add color layer	0 -2.0000 -1.3333 -0.6667 0.0000 0.6667 1.3333 2.0000
Add color layer	-2.000
	Automatically preview changes Preview on 3D
clusion and notes:	
o significant differences between	n the original scan data and the generated uniform mesh



Test reference:	3DFFTI_TC_8_Meshing_6	
Colors mapping - multpl	e —	
Range Inclination Inspection Inspection1	Map colors Histogram	2.6081
Inspection2	Mean -0.0019	1.7086
		0.8091
		<u>-0.090</u>
		-0.990
- Remove color layer		< <u>-1.889</u>
Add color layer	0 -2.7890 -1.8895 -0.9900 -0.0905 0.8091 1.7086 2.6081	
	Automatically preview changes C Preview on 3D	-2.7890
Conclusion and notes: - very small differences between the	original scan data and the generated uniform mesh combinatior	of 2 meshes

3DFFTI_TC_9_measure acc **Test reference:** Test procedure - the same start and end point has been used to extract the distance value fo 10 independents measures Recipe Window Current distance Distance 1_1 0 3 Length 306.4530 mm Along UCS X 252.6942 mm 0 • • Along UCS Y 172.5362 mm Along UCS Z 17.0393 mm • Distance extr 0 Start point x 126.9802 mm 0 Y 84.8887 mm 5 ... 7 11.5938 mm 0 End point 125.7141 mm v -87.6475 mm 🗼 ... v 0 -5.4455 mm ble Click on 3D s set the end point 0 • Distance between two shapes Drop the first shape here: • Drop the second shape here: Compute distance between shapes ance analysis and expor Extract distance's three components Save distance to... 🔻 ance notes **Results:** - 10 users repeated the same measure independently with te following results Start point coordinates: End point coordinates: distance mm user 1 306.453 -126.9802 84.8887 11.5938 125.7141 -87.6475 -5.4455 306.453 -126.980284.8887 11.5938 125.7141 -87.6475 -5.4455 user 2 user 3 306.453 -126.9802 84.8887 11.5938 125.7141 -87.6475 -5.4455 306.453 -126.9802 84.8887 11.5938 125.7141 -87.6475 -5.4455 user 4 user 5 306.453 -126.9802 84.8887 11.5938 125.7141 -87.6475 -5.4455 306.453 -126,9802 84,8887 11.5938 125,7141 -87.6475 -5.4455 user 6 user 7 306.453 -126.9802 84.8887 11.5938 125.7141 -87.6475 -5.4455 306.453 -126.9802 84.8887 11.5938 125.7141 -87.6475 -5.4455 user 8 user 9 306.453 -126.9802 84.8887 11.5938 125.7141 -87.6475 -5.4455 user 10 306.453 -126.9802 84.8887 11.5938 125.7141 -87.6475 -5.4455 mean 306.453 mm standar deviation 0 mm Conclusion and notes: - the measuring tool provides the same distance value for all the 10 measures

Draw coordina... Point size 5 Point size Subsampling Color mapped quality The measure in the original pointcloud (before the import in the analysis software) is

306.575 mm

[255, 229, 0] (2...

25 Draw annotation 🗌 False

Comment

Test reference:	2	DFFT TC 9 m		ar				
Results:	3		easure re	JI				
10 users repeated the same	moocuro indonon	lanthy with to falls	wing roculto					
10 users repeated the same	measure muepend	iently with te folio	iwing results					
measured value before the d	lata import in the	3D analesys softw	are 3	806.575 n	nm			
	Student-factor for				measurem	ents		
	https://en.wikipe	dia.org/wiki/Stude	ent%27s_t-dis	stribution				
	distance mm m	ax error in mm	Start point c	oordinates:		End point co	ordinates:	
user 1	306.6709	-0.0959	-126.9802	84.8887	11.5938	125.8679	-87.8136	-5.4003
user 2	306.3039	0.2711	-126.8159	84.7315	11.5576	125.6981	-87.8111	-5.407
user 3	306.7932	-0.2182	-127.1349	84.8748	11.6404	125.8679	-87.8136	-5.4003
user 4	306.7932	-0.2182	-127.1349	84.8748	11.6404	125.8679	-87.8136	-5.4003
user 5	306.7714	-0.1964	-126.9863	85.0575	11.6005	125.8679	-87.8136	-5.4003
user 6	306.7932	-0.2182	-127.1349	84.8748	11.6404	125.8679	-87.8136	-5.4003
user 7	306.8917	-0.3167	-127.1398	85.0413	11.6532	125.8679	-87.8136	-5.4003
user 8	306.8917	-0.3167	-127.1398	85.0413	11.6532	125.8679	-87.8136	-5.4003
user 9	306.8917	-0.3167	-127.1398	85.0413	11.6532	125.8679	-87.8136	-5.4003
user 10	306.6709	-0.0959	-126.9802	84.8887	11.5938	125.8679	-87.8136	-5.4003
			deviaton from	n the mean v	value			
mean	306.747 m	im	-0.172 r	nm				
standard deviation	0.176 m	im						
Reproducibilty UNC	0.391 m	im						
nclusion and notes:								
measured value before the d						306.575 ı	mm	
max displacement in 10 mea	sures from the va	lue before data im	port			-0.317 r		
mean value in 10 measures						306.747 r		
· · · P · · · · · · · · · · · · · · · ·				-0.172 r				
- standard deviation of 10 measures				0.176 r				
measurement uncertainty of	10 measures					0.391 r	nm	