3D-Forensics / FTI

Mobile high-resolution 3D-Scanner and 3D data analysis for Footwear and Tire Track Evidence

GIFT conference, Brussels, 17 October 2017

Roland Ramm, Fraunhofer IOF

Crabbe Consulting Ltd
Lucas instruments GmbH
GEXCEL Srl
DelftTech BV
Fraunhofer IOF

The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no 312307 and Horizon 2020 research and innovation programme under grant agreement no 700829.

DISCLAIMER: The information appearing in this document has been prepared in good faith and represents the opinions of the authors. The authors are solely responsible for this publication and it does not represent the opinion of the European Commission or its Research Executive Agency. Neither the authors nor the European Commission or its Research Executive Agency are responsible or any use that might be made of data including opinions appearing herein. The reader/viewer is encouraged to investigate whether professional advice is necessary in all situations.
Projects 3D-Forensics and 3D-Forensics/FTI

- Development and Introduction of optical 3D scanning to secure and analyse footwear / tyre impression traces

3D-Forensics
- FP7 – “Advancing contemporary forensic methods and equipment”
- 01/05/2013 – 31/08/2015
- Partners: 7
- Objective: Prototype (TRL6)

3D-Forensics/FTI
- Horizon2020 – “Fast Track to Innovation”
- 01/07/2016 – 31/12/2018
- Partners: 5 (+7 associated end users)
- Objective: Advanced Prototype / Product
Participants 3D-Forensics and 3D-Forensics/FTI

<table>
<thead>
<tr>
<th>Participant organisation name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fraunhofer Institute for Applied Optics and Precision Engineering</td>
</tr>
<tr>
<td>Crabbe Consulting Ltd</td>
</tr>
<tr>
<td>Crime Scene Unit Zeeland – West-Brabant</td>
</tr>
<tr>
<td>DelftTech BV</td>
</tr>
<tr>
<td>LUCAS Instruments GmbH</td>
</tr>
<tr>
<td>Enclustra GmbH</td>
</tr>
<tr>
<td>Gexcel SRL</td>
</tr>
</tbody>
</table>

Public End User

- Politie

Companies developing and supplying hardware and software

- RTO and research consultant

Company with crime scene forensic expertise

- DelftTech BV
Agenda

- Problem / Motivation

- Development of the 3D-Forensics system
 - 3D scanner
 - 3D analysis software

- Introduction of the 3D-Forensics system
Problem: Typical traces at Crime Scenes

Diversity of traces at crime scenes in a certain period of time in the region Zeeland (NL)

<table>
<thead>
<tr>
<th>Trace type</th>
<th>Frequency %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological</td>
<td>10.38</td>
</tr>
<tr>
<td>Dactyloscopical</td>
<td>2.26</td>
</tr>
<tr>
<td>Gloves</td>
<td>5.54</td>
</tr>
<tr>
<td>Clothing</td>
<td>0.04</td>
</tr>
<tr>
<td>Microscopic traces (fibers / glass / …)</td>
<td>28.22</td>
</tr>
<tr>
<td>Digital Recordings</td>
<td>0.16</td>
</tr>
<tr>
<td>Footwear and tyre traces</td>
<td>22.91</td>
</tr>
<tr>
<td>Toolmarks</td>
<td>30.48</td>
</tr>
</tbody>
</table>

- Footwear and tyre impressions are common traces at crime scenes (because the criminals cannot “fly“)
- They can be used to identify suspects and convict criminals
- They have a great importance to identify links between crime scenes or suspects ➤ Forensic Intelligence
Motivation: Plaster casting vs 3D scanning

- Footwear and tyre impressions are typically recorded by **plaster casting** (if time and circumstances allow it) or simple photography (but which captures only limited information value).

- **Optical 3D scanning** can improve the securing and investigation of impression traces ► **Stereo-based pattern projection** (structured light)

![Optical 3D scan of an impression](image-url)

![Visualisation of a scanned shoe print in R3 Forensics software](image-url)
Motivation: Plaster casting vs 3D scanning

Classic – Plaster casting
- Time up to 1.5 hours on scene
- Influence of weather
- Choose priority of technique
- Multiple processes at the impression
- Dirty
- Transport (fragile)
- Storage of evidence
- Selection because of amount of work
- All work done by expert

3D-Forensics - 3D scan
- Time (several seconds) on scene
- Almost no influence of weather
- More evidence because of easiness = more identifications
- Non destructive
- Clean
- Digital storage
- Pre-selection evidence
- Evidence can be sent digitally and even printed by 3D printer
Agenda

- Problem / Motivation

- Development of the 3D-Forensics system
 - 3D scanner
 - 3D analysis software

- Introduction of the 3D-Forensics system
3D-scanner: Prototype

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highly resolved 3D and color</td>
<td>Simple to use: 1 trace in one shot</td>
</tr>
<tr>
<td>Application outdoors mobile, handheld</td>
<td>Compact, battery driven</td>
</tr>
<tr>
<td>Equipment for bright sunlight</td>
<td>Easy to transport</td>
</tr>
</tbody>
</table>

© 3D-Forensics/FTI consortium
3D-scanner: Prototype specifications

Confidential – not in Public version for wider release
3D-scanner: Prototype capabilities

- Details are important individual characteristics of shoes
3D-Forensics system: „from crime scene to court”

- Traditional securing and analysis procedure

- New 3D scan based procedure mimics the traditional procedure
3D analysis software: R3 Forensic Prototype

- **R3 Forensic**: Simple user interface – different shadings - colour
3D analysis software: R3 Forensic Prototype

R3 Forensic: Simple user interface – different shadings - colour
3D analysis software: R3 Forensic Prototype

- Two-stage process

Phase 1
Import / Preprocessing

- Preprocessing, Stitching & Registration
- Meshing + Colour mapping

Phase 2
Analysis
3D analysis software: R3 Forensic Prototype

- Preprocessing and simple stitching of single scans
3D analysis software: R3 Forensic Prototype

Class characteristics, like type and size
3D analysis software: R3 Forensic Prototype

Individual characteristics

Import of pre-defined identification characteristics
3D analysis software: R3 Forensic Prototype

Comparison of datasets
Agenda

- Problem / Motivation

- Development of the 3D-Forensics system
 - 3D scanner
 - 3D analysis software

- Introduction of the 3D-Forensics system
Introduction of the 3D-Forensics system

(1) **Familiarisation testing**
 Initial introductory training by 7 end users

(2) **Pilot testing**
 System demonstration in small operational area and in a controlled manner to identify the operational benefits and any further improvements
 ▶ receive feedback and suggestions for technical improvements to be implemented in the advanced prototype (TRL9)

(3) **Round robin testing**
 Performance verification, reproducibility tests by different users

(4) **Validation** (in an accredited process)
System testing: Loan of prototypes

- Testing of typical materials / objects
- Evaluation of usability
- Varying scan settings / environments
- Evaluation of software tools

![Tyre trace in R3 Forensic](image)

- Handheld
- Tripod
- Shadow box

![Clay Soil Mortar Sand](image)

![3D scan in snow](image)
System testing: Evaluation of data

- Evaluation of data quality
- Comparison to other techniques

Photo | Plaster cast | 3D-Scan | Resolution specimen
Round robin test and Validation

- Feedback from first testing phase is used to improve the prototypes
- **Round robin test** is then a first step to demonstrate the **validity of the 3D-Forensics system**:
 - Different users scan the same traces
 - Different users analyse and compare the same 3D datasets
- **Validation** means:
 - Create a **body of evidence** (data and its analysis) to convince criminal justice systems
 - Prepare a **comprehensive documentation** about the usability of the overall 3D-Forensics system for the application on footwear and tyre impressions from crime scene to court
 - Develop **quality control procedures** for end users
Round robin test and Validation

Important frameworks for validation:

- Criminal law (incl. procedure)
- Standards
 - ISO/IEC 17020:2012, Conformity assessment - Requirements for the operation of various types of bodies performing inspection
 - ISO/IEC 17025:2005, General requirements for the competence of testing and calibration laboratories
 -
Summary

- The projects 3D-Forensics and 3D-Forensics/FTI pursue the **Development** and **Introduction** of a new method to capture and analyse footwear and tyre impressions by **optical 3D scanning**
 - „from crime scene to court“

Next steps:

- **2017/18 >>** Technical improvement to reach an advanced prototype
- **2018 >>** Round robin testing on a set of traces and datasets
 - Validation in an accredited process
- **2018/19 >>** Product launch
Thanks for the invitation and your attention!

More information about 3D-Forensics?

http://www.3D-Forensics.eu
stephen.crabbe@crabbe-consulting.com

More information about 3D scanning?

http://s.fhg.de/3DM
peter.kuehmstedt@iof.fraunhofer.de